keyword
MENU ▼
Read by QxMD icon Read
search

Adjusting

keyword
https://www.readbyqxmd.com/read/28814059/biomot-exoskeleton-towards-a-smart-wearable-robot-for-symbiotic-human-robot-interaction
#1
Tomislav Bacek, Marta Moltedo, Kevin Langlois, Guillermo Asin Prieto, Maria Carmen Sanchez-Villamanan, Jose Gonzalez-Vargas, Bram Vanderborght, Dirk Lefeber, Juan C Moreno
This paper presents design of a novel modular lower-limb gait exoskeleton built within the FP7 BioMot project. Exoskeleton employs a variable stiffness actuator in all 6 joints, a directional-flexibility structure and a novel physical humanrobot interfacing, which allows it to deliver the required output while minimally constraining user's gait by providing passive degrees of freedom. Due to modularity, the exoskeleton can be used as a full lower-limb orthosis, a single-joint orthosis in any of the three joints, and a two-joint orthosis in a combination of any of the two joints...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814051/design-of-a-wearable-hand-exoskeleton-for-exercising-flexion-extension-of-the-fingers
#2
Inseong Jo, Jeongsoo Lee, Yeongyu Park, Joonbum Bae
In this paper, design of a wearable hand exoskeleton system for exercising flexion/extension of the fingers, is proposed. The exoskeleton was designed with a simple and wearable structure to aid finger motions in 1 degree of freedom (DOF). A hand grasping experiment by fully-abled people was performed to investigate general hand flexion/extension motions and the polynomial curve of general hand motions was obtained. To customize the hand exoskeleton for the user, the polynomial curve was adjusted to the joint range of motion (ROM) of the user and the optimal design of the exoskeleton structure was obtained using the optimization algorithm...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814031/evaluation-of-walking-smoothness-using-wearable-robotic-system-curara%C3%A2-for-spinocerebellar-degeneration-patients
#3
Atsushi Tsukahara, Kunihiro Yoshida, Akira Matsushima, Kumiko Ajima, Chika Kuroda, Noriaki Mizukami, Minoru Hashimoto
This paper aimed to verify the effectiveness of the wearable robotic system "curara" for patients with spinocerebellar degeneration (SCD) by evaluating walking smoothness. The curara system supports the wearer's gait using a synchronization control method that uses a neural oscillator based on a central pattern generator network. The system reflects the motional intention by adjusting the synchronization gains. This modifies the degree of interactive coordinated motion between the curara and the wearer. As a feasibility study, we evaluated the waking smoothness of 10 patients with SCD using three gain condition settings...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814014/bio-inspired-control-of-joint-torque-and-knee-stiffness-in-a-robotic-lower-limb-exoskeleton-using-a-central-pattern-generator
#4
Stefan O Sobrade, Yannik Nager, Amy R Wu, Roger Gassert, Auke Ijspeert
Robotic lower limb exoskeletons are becoming increasingly popular in therapy and recreational use. However, most exoskeletons are still rather limited in their locomotion speed and the activities of daily live they can perform. Furthermore, they typically do not allow for a dynamic adaptation to the environment, as they are often controlled with predefined reference trajectories. Inspired by human leg stiffness modulation during walking, variable stiffness actuators increase flexibility without the need for more complex controllers...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813945/towards-a-situation-and-user-aware-multi-modal-motorized-toilet-system-to-assist-older-adults-with-disabilities-a-user-requirements-study
#5
T Pilissy, A Toth, G Fazekas, A Sobjak, R Rosenthal, T Luftenegger, P Panek, P Mayer
In the recent decades state of the art technologies appeared in many areas to assist older adults with disabilities. However, one very essential activity of daily life, the toileting remained without any relevant development. The iToilet project of the European Union focuses on the development of an intelligent and motorized toilet system to enable independent toilet use for older adults with disabilities. To begin the development, the user requirements of end-users were assessed by means of focus group interviews and questionnaires...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813931/making-neurorehabilitation-fun-multiplayer-training-via-damping-forces-balancing-differences-in-skill-levels
#6
Kilian Baur, Peter Wolf, Robert Riener, Jaime E Duarte
Multiplayer environments are thought to increase the training intensity in robot-aided rehabilitation therapy after stroke. We developed a haptic-based environment to investigate the dynamics of two-player training performing time-constrained reaching movements using the ARMin rehabilitation robot. We implemented a challenge level adaptation algorithm that controlled a virtual damping coefficient to reach a desired success rate. We tested the algorithm's effectiveness in regulating the success rate during game play in a simulation with computer-controlled players, in a feasibility study with six unimpaired players, and in a single session with one stroke patient...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813913/emu-a-transparent-3d-robotic-manipulandum-for-upper-limb-rehabilitation
#7
Justin Fong, Vincent Crocher, Ying Tan, Denny Oetomo, Iven Mareels
This paper introduces the EMU, a three-dimensional robotic manipulandum for rehabilitation of the upper extremity for patients with neurological injury. The device has been designed to be highly transparent, have a large workspace, and allow the use of the hand for interaction with real-world objects to provide additional contextual cues during exercises. The transparency is achieved through the use of a capstan transmission for the drive joints; a hybrid serial parallel kinematics minimising moving inertia; and lightweight materials...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813906/the-ewrist-a-wearable-wrist-exoskeleton-with-semg-based-force-control-for-stroke-rehabilitation
#8
Charles Lambelet, Mingxing Lyu, Daniel Woolley, Roger Gassert, Nicole Wenderoth
Chronic wrist impairment is frequent following stroke and negatively impacts everyday life. Rehabilitation of the dysfunctional limb is possible but requires extensive training and motivation. Wearable training devices might offer new opportunities for rehabilitation. However, few devices are available to train wrist extension even though this movement is highly relevant for many upper limb activities of daily living. As a proof of concept, we developed the eWrist, a wearable one degree-of-freedom powered exoskeleton which supports wrist extension training...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813904/task-directionality-impacts-the-ability-of-individuals-with-chronic-hemiparetic-stroke-to-match-torques-between-arms-preliminary-findings
#9
Nina A van der Helm, Netta Gurari, Justin M Drogos, Julius P A Dewald
Post hemiparetic stroke an individual may face difficulty performing bimanual tasks due to an asymmetry in their arms' strengths. Here, we determined whether participants with a strength asymmetry were impaired bi-directionally when matching torques between arms (i.e., paretic arm matches non-paretic arm, non-paretic arm matches paretic arm). Six participants with chronic hemiparetic stroke and four participants without neurological impairments partook in this study. First, we identified the maximum voluntary torque that participants could generate about each elbow joint (τmvt)...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813900/mechanical-design-of-efw-exo-ii-a-hybrid-exoskeleton-for-elbow-forearm-wrist-rehabilitation
#10
Hui Bian, Ziye Chen, Hao Wang, Tieshi Zhao
The use of rehabilitation exoskeleton has become an important means for the treatment of stroke patients. A hybrid exoskeleton named EFW Exo II is developed for the motor function rehabilitation of elbow, forearm and wrist. The EFW Exo II is based on a parallel 2-URR/RRS mechanism and a serial R mechanism. It could fit both left and right arms for the symmetrical and open structure, and the distance between the elbow and wrist could automatically adjust for different forearm length. Details of the mechanical design are introduced...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813884/design-parameters-and-torque-profile-modification-of-a-spring-assisted-hand-opening-exoskeleton-module
#11
Nik R Butler, Stephen A Goodwin, Joel C Perry
There is a growing demand for functional rehabilitation orthotics that can effectively assist in patient recovery from motor impairments after stroke. The hand in particular is a complex system that has proven difficult to mimic with current exoskeleton technologies. This paper presents data-driven design parameters to increase the functionality and improve the assistance profile of the ArmAssist-2.0 hand module. Improvements from the previous model include adjustable linkages to fulfill the largest population of users, new joint locations to more accurately represent biomechanics of the hand, and a more impairment-appropriate torque profile to assist in hand opening, adjustable through interchangeable springs...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813860/design-and-evaluation-of-a-modular-lower-limb-exoskeleton-for-rehabilitation
#12
Wilian M Dos Santos, Samuel L Nogueira, Gustavo C de Oliveira, Guido G Pena, Adriano A G Siqueira
This paper deals with the evaluation of an exoskeleton designed for assisting individuals to rehabilitate compromised lower limb movements resulting from stroke or incomplete spinal cord injury. The exoskeleton is composed of lightweight tubular structures and six free joints that provide a modular feature to the system. This feature allows the exoskeleton to be adapted to assist the movement of one or more patient joints. The actuation of the exoskeleton is also modular, and can be performed passively, by means of springs and dampers, or actively through actuators...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813853/towards-human-knee-orthosis-interaction-based-on-adaptive-impedance-control-through-stiffness-adjustment
#13
Joana Figueiredo, Paulo Felix, Cristina P Santos, Juan C Moreno
Rehabilitation interventions involving powered, wearable lower limb orthoses that can provide high-challenging locomotor tasks for repetitive training sessions, mainly when assist-as-needed strategies, such as adaptive impedance control, are designed. In this study, the adaptive behavior was ensured by software control of the robotic stiffness involved in the human-knee orthosis interaction in function of the gait cycle and speed. To estimate the stiffness, we analyzed the interaction torque-angle characteristics with experimental data...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813848/preliminary-assessment-of-a-lower-limb-exoskeleton-controller-for-guiding-leg-movement-in-overground-walking
#14
Andres Martinez, Brian Lawson, Michael Goldfarb
This paper describes the design, implementation, and preliminary validation of a controller for a powered lower-limb exoskeleton that reshapes a user's leg movement during over-ground walking. The intended application of the controller is to facilitate gait training for individuals suffering from post-stroke hemiparesis. The controller mimics a kinematic constraint between the knee and hip joints during the swing phase of gait, such that movement is not dependent on time (i.e., step time is determined entirely by the user)...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813832/design-and-experimental-evaluation-of-a-lightweight-high-torque-and-compliant-actuator-for-an-active-ankle-foot-orthosis
#15
Marta Moltedo, Tomislav Bacek, Kevin Langlois, Karen Junius, Bram Vanderborght, Dirk Lefeber
The human ankle joint plays a crucial role during walking. At the push-off phase the ankle plantarflexors generate the highest torque among the lower limb joints during this activity. The potential of the ankle plantarflexors is affected by numerous pathologies and injuries, which cause a decrease in the ability of the subject to achieve a natural gait pattern. Active orthoses have shown to have potential in assisting these subjects. The design of such robots is very challenging due to the contrasting design requirements of wearability (light weight and compact) and high torques capacity...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813829/development-of-an-automatic-rotational-orthosis-for-walking-with-arm-swing
#16
Juan Fang, Guo-Yuan Yang, Le Xie
Interlimb neural coupling is often observed during normal gait and is postulated to be important for gait restoration. In order to provide a testbed for investigation of interlimb neural coupling, we previously developed a rotational orthosis for walking with arm swing (ROWAS). The present study aimed to develop and evaluate the feasibility of a new system, viz. an automatic ROWAS (aROWAS). We developed the mechanical structures of aROWAS in SolidWorks, and implemented the concept in a prototype. Normal gait data from walking at various speeds were used as reference trajectories of the shoulder, hip, knee and ankle joints...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813825/research-of-the-bws-system-for-lower-extremity-rehabilitation-robot
#17
Xiao Zhang, Weida Li, Juan Li, Xiaowei Cai
Body weight support (BWS) system is increasingly used in conjunction with treadmills to assist the patients with neurological impairments. Owing to lower limbs of the patients unable to bear the whole weight during the rehabilitation training, some weight can be removed to help the patients recover the basic walking ability gradually. Therefore, considering the man-machine relationship and the effects of the rehabilitation, a wire-driven BWS system is designed. The main unit of the system is an active closed-loop controlled drive to generate the exact desired force...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813824/the-effect-of-haptic-interaction-between-balance-assessment-robot-and-pelvis-on-muscle-activation-of-leg-muscles
#18
Andrej Olensek, Matjaz Zadravec, Zlatko Matjacic
Admittance control is considered as a promising paradigm in rehabilitation that provides us with means to establish well controlled and adjustable interaction and cooperation between rehabilitation devices and patients. Recently we developed balance assessment robot (BAR) for studying postural responses during walking as well as for pelvis manipulation during walking that implements admittance control as a mean of interaction with user. In this study we evaluated the characteristics of transparent haptic interaction and investigated whether transparent haptic interaction induces adaptations in muscle activation patterns with respect to free walking...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813823/a-generalized-framework-to-achieve-coordinated-admittance-control-for-multi-joint-lower-limb-robotic-exoskeleton
#19
Kai Gui, Honghai Liu, Dingguo Zhang
Traditional joint space admittance controller for N-DOF robotic systems is complexity and easily leads to incongruous movement among all joints. Our study introduces a central pattern generator (CPG) network into one-dimension joint space admittance control for the custom-made lower limb robotic exoskeleton with four DOFs, to guarantee the coordinated movement and security of users. The predefined trajectories for four joints are produced by CPG. Unilateral knee joint torque of subjects is detected based on corresponding muscle EMG signals...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813808/experimental-evaluation-of-a-semg-based-control-for-elbow-wearable-assistive-devices-during-load-lifting-tasks
#20
Roberto Meattini, Gianluca Palli, Claudio Melchiorri
In this work, a surface skin electromyography(sEMG)-based control solution for elbow wearable assistive devices during load lifting tasks is presented. The goal of the controller consists in limiting the user's muscle activity during the task execution, in such a way that the assistive device can partially compensate the load-related biceps muscle effort. Since sEMG-driven control strategies based on the estimation of the joint torques generally requires complex task- and subject-dependent training sessions for tuning the control algorithms, here a more direct control approach is proposed, based on a muscle activity error related proportional-integral action together with an double-threshold activation logic...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
keyword
keyword
52066
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"