keyword
MENU ▼
Read by QxMD icon Read
search

Yeast meiosis

keyword
https://www.readbyqxmd.com/read/28711872/cell-scientist-to-watch-kevin-corbett
#1
(no author information available yet)
Kevin Corbett graduated in biology and biochemistry from the University of Virginia. He then went to the University of California, Berkeley, to work on the structure and function of DNA topoisomerases in bacteria and archaea for his PhD with James Berger. In 2005, he moved to the laboratory of Stephen Harrison at Harvard Medical School for his postdoctoral work on kinetochore structure and function, particularly the yeast monopolin complex, which promotes proper chromosome segregation in the first meiotic division...
July 15, 2017: Journal of Cell Science
https://www.readbyqxmd.com/read/28673925/acetylation-regulates-monopolar-attachment-at-multiple-levels-during-meiosis-i-in-fission-yeast
#2
Ayano Kagami, Takeshi Sakuno, Yuya Yamagishi, Tadashi Ishiguro, Tatsuya Tsukahara, Katsuhiko Shirahige, Koichi Tanaka, Yoshinori Watanabe
No abstract text is available yet for this article.
July 2017: EMBO Reports
https://www.readbyqxmd.com/read/28655762/the-m6a-methyltransferase-ime4-epitranscriptionally-regulates-triacylglycerol-metabolism-and-vacuolar-morphology-in-haploid-yeast-cells
#3
Pradeep Kumar Yadav, Ram Rajasekharan
N6-methyladenosine (m6A) is among the most common modifications in eukaryotic mRNA. The role of yeast m6A methyltransferase, Ime4, in meiosis and sporulation in diploid strains is very well studied, but its role in haploid strains has remained unknown. Here, with the help of an immunoblotting strategy and Ime4-GFP protein localization studies, we establish the physiological role of Ime4 in haploid cells. Our data showed that Ime4 epitranscriptionally regulates triacylglycerol metabolism and vacuolar morphology through the long-chain fatty acyl-CoA synthetase Faa1, independently of the RNA methylation complex (MIS complex)...
June 27, 2017: Journal of Biological Chemistry
https://www.readbyqxmd.com/read/28628358/h2b-ubiquitination-conserved-molecular-mechanism-diverse-physiologic-functions-of-the-e3-ligase-during-meiosis
#4
Liying Wang, Chunwei Cao, Fang Wang, Jianguo Zhao, Wei Li
RNF20/Bre1 mediated H2B ubiquitination (H2Bub) has various physiologic functions. Recently, we found that H2Bub participates in meiotic recombination by promoting chromatin relaxation during meiosis. We then analyzed the phylogenetic relationships among the E3 ligase for H2Bub, its E2 Rad6 and their partner WW domain-containing adaptor with a coiled-coil (WAC) or Lge1, and found that the molecular mechanism underlying H2Bub is evolutionarily conserved from yeast to mammals. However, RNF20 has diverse physiologic functions in different organisms, which might be caused by the evolutionary divergency of their domain/motif architectures...
June 19, 2017: Nucleus
https://www.readbyqxmd.com/read/28609436/cleavage-of-the-sun-domain-protein-mps3-at-its-n-terminus-regulates-centrosome-disjunction-in-budding-yeast-meiosis
#5
Ping Li, Hui Jin, Bailey A Koch, Rebecca L Abblett, Xuemei Han, John R Yates, Hong-Guo Yu
Centrosomes organize microtubules and are essential for spindle formation and chromosome segregation during cell division. Duplicated centrosomes are physically linked, but how this linkage is dissolved remains unclear. Yeast centrosomes are tethered by a nuclear-envelope-attached structure called the half-bridge, whose components have mammalian homologues. We report here that cleavage of the half-bridge protein Mps3 promotes accurate centrosome disjunction in budding yeast. Mps3 is a single-pass SUN-domain protein anchored at the inner nuclear membrane and concentrated at the nuclear side of the half-bridge...
June 2017: PLoS Genetics
https://www.readbyqxmd.com/read/28538144/probing-the-potential-role-of-non-b-dna-structures-at-yeast-meiosis-specific-dna-double-strand-breaks
#6
Rucha Kshirsagar, Krishnendu Khan, Mamata V Joshi, Ramakrishna V Hosur, K Muniyappa
A plethora of evidence suggests that different types of DNA quadruplexes are widely present in the genome of all organisms. The existence of a growing number of proteins that selectively bind and/or process these structures underscores their biological relevance. Moreover, G-quadruplex DNA has been implicated in the alignment of four sister chromatids by forming parallel guanine quadruplexes during meiosis; however, the underlying mechanism is not well defined. Here we show that a G/C-rich motif associated with a meiosis-specific DNA double-strand break (DSB) in Saccharomyces cerevisiae folds into G-quadruplex, and the C-rich sequence complementary to the G-rich sequence forms an i-motif...
May 23, 2017: Biophysical Journal
https://www.readbyqxmd.com/read/28527011/the-prdm9-krab-domain-is-required-for-meiosis-and-involved-in-protein-interactions
#7
Yukiko Imai, Frédéric Baudat, Miguel Taillepierre, Marcello Stanzione, Attila Toth, Bernard de Massy
PR domain-containing protein 9 (PRDM9) is a major regulator of the localization of meiotic recombination hotspots in the human and mouse genomes. This role involves its DNA-binding domain, which is composed of a tandem array of zinc fingers, and PRDM9-dependent trimethylation of histone H3 at lysine 4. PRDM9 is a member of the PRDM family of transcription regulators, but unlike other family members, it contains a Krüppel-associated box (KRAB)-related domain that is predicted to be a potential protein interaction domain...
May 19, 2017: Chromosoma
https://www.readbyqxmd.com/read/28514186/apc-c-cdc20-mediates-deprotection-of-centromeric-cohesin-at-meiosis-ii-in-yeast
#8
Katarzyna Jonak, Ievgeniia Zagoriy, Tugce Oz, Peter Graf, Julie Rojas, Valentina Mengoli, Wolfgang Zachariae
Cells undergoing meiosis produce haploid gametes through one round of DNA replication followed by 2 rounds of chromosome segregation. This requires that cohesin complexes, which establish sister chromatid cohesion during S phase, are removed in a stepwise manner. At meiosis I, the separase protease triggers the segregation of homologous chromosomes by cleaving cohesin's Rec8 subunit on chromosome arms. Cohesin persists at centromeres because the PP2A phosphatase, recruited by the shugoshin protein, dephosphorylates Rec8 and thereby protects it from cleavage...
June 18, 2017: Cell Cycle
https://www.readbyqxmd.com/read/28510588/evolutionary-restoration-of-fertility-in-an-interspecies-hybrid-yeast-by-whole-genome-duplication-after-a-failed-mating-type-switch
#9
Raúl A Ortiz-Merino, Nurzhan Kuanyshev, Stephanie Braun-Galleani, Kevin P Byrne, Danilo Porro, Paola Branduardi, Kenneth H Wolfe
Many interspecies hybrids have been discovered in yeasts, but most of these hybrids are asexual and can replicate only mitotically. Whole-genome duplication has been proposed as a mechanism by which interspecies hybrids can regain fertility, restoring their ability to perform meiosis and sporulate. Here, we show that this process occurred naturally during the evolution of Zygosaccharomyces parabailii, an interspecies hybrid that was formed by mating between 2 parents that differed by 7% in genome sequence and by many interchromosomal rearrangements...
May 2017: PLoS Biology
https://www.readbyqxmd.com/read/28505149/distinct-dna-binding-surfaces-in-the-atpase-and-linker-domains-of-mutl%C3%AE-determine-its-substrate-specificities-and-exert-separable-functions-in-meiotic-recombination-and-mismatch-repair
#10
Corentin Claeys Bouuaert, Scott Keeney
Mlh1-Mlh3 (MutLγ) is a mismatch repair factor with a central role in formation of meiotic crossovers, presumably through resolution of double Holliday junctions. MutLγ has DNA-binding, nuclease, and ATPase activities, but how these relate to one another and to in vivo functions are unclear. Here, we combine biochemical and genetic analyses to characterize Saccharomyces cerevisiae MutLγ. Limited proteolysis and atomic force microscopy showed that purified recombinant MutLγ undergoes ATP-driven conformational changes...
May 2017: PLoS Genetics
https://www.readbyqxmd.com/read/28497540/meikin-associated-polo-like-kinase-specifies-bub1-distribution-in-meiosis-i
#11
Seira Miyazaki, Jihye Kim, Yuya Yamagishi, Tadashi Ishiguro, Yuki Okada, Yuji Tanno, Takeshi Sakuno, Yoshinori Watanabe
In meiosis I, sister chromatids are captured by microtubules emanating from the same pole (mono-orientation), and centromeric cohesion is protected throughout anaphase. Shugoshin, which is localized to centromeres depending on the phosphorylation of histone H2A by Bub1 kinase, plays a central role in protecting meiotic cohesin Rec8 from separase cleavage. Another key meiotic kinetochore factor, meikin, may regulate cohesion protection, although the underlying molecular mechanisms remain elusive. Here, we show that fission yeast Moa1 (meikin), which associates stably with CENP-C during meiosis I, recruits Plo1 (polo-like kinase) to the kinetochores and phosphorylates Spc7 (KNL1) to accumulate Bub1...
May 12, 2017: Genes to Cells: Devoted to Molecular & Cellular Mechanisms
https://www.readbyqxmd.com/read/28493118/position-matters-multiple-functions-of-linc-dependent-chromosome-positioning-during-meiosis
#12
Kazuhiro Katsumata, Eriko Nishi, Sadia Afrin, Kaoru Narusawa, Ayumu Yamamoto
Chromosome positioning is crucial for multiple chromosomal events, including DNA replication, repair, and recombination. The linker of nucleoskeleton and cytoskeleton (LINC) complexes, which consist of conserved nuclear membrane proteins, were shown to control chromosome positioning and facilitate various biological processes by interacting with the cytoskeleton. However, the precise functions and regulation of LINC-dependent chromosome positioning are not fully understood. During meiosis, the LINC complexes induce clustering of telomeres, forming the bouquet chromosome arrangement, which promotes homologous chromosome pairing...
May 10, 2017: Current Genetics
https://www.readbyqxmd.com/read/28485209/pleiotropic-functions-of-the-yeast-greatwall-family-protein-kinase-rim15p-a-novel-target-for-the-control-of-alcoholic-fermentation
#13
REVIEW
Daisuke Watanabe, Hiroshi Takagi
Rim15p, a Greatwall-family protein kinase in yeast Saccharomyces cerevisiae, is required for cellular nutrient responses, such as the entry into quiescence and the induction of meiosis and sporulation. In higher eukaryotes, the orthologous gene products are commonly involved in the cell cycle G2/M transition. How are these pleiotropic functions generated from a single family of protein kinases? Recent advances in both research fields have identified the conserved Greatwall-mediated signaling pathway and a variety of downstream target molecules...
June 2017: Bioscience, Biotechnology, and Biochemistry
https://www.readbyqxmd.com/read/28453523/the-mismatch-repair-and-meiotic-recombination-endonuclease-mlh1-mlh3-is-activated-by-polymer-formation-and-can-cleave-dna-substrates-in-trans
#14
Carol M Manhart, Xiaodan Ni, Martin A White, Joaquin Ortega, Jennifer A Surtees, Eric Alani
Crossing over between homologs is initiated in meiotic prophase by the formation of DNA double-strand breaks that occur throughout the genome. In the major interference-responsive crossover pathway in baker's yeast, these breaks are resected to form 3' single-strand tails that participate in a homology search, ultimately forming double Holliday junctions (dHJs) that primarily include both homologs. These dHJs are resolved by endonuclease activity to form exclusively crossovers, which are critical for proper homolog segregation in Meiosis I...
April 2017: PLoS Biology
https://www.readbyqxmd.com/read/28450458/the-mitotic-exit-network-regulates-spindle-pole-body-selection-during-sporulation-of-saccharomyces-cerevisiae
#15
Christian Renicke, Ann-Katrin Allmann, Anne Pia Lutz, Thomas Heimerl, Christof Taxis
Age-based inheritance of centrosomes in eukaryotic cells is associated with faithful chromosome distribution in asymmetric cell divisions. During Saccharomyces cerevisiae ascospore formation, such an inheritance mechanism targets the yeast centrosome equivalents, the spindle pole bodies (SPBs) at meiosis II onset. Decreased nutrient availability causes initiation of spore formation at only the younger SPBs and their associated genomes. This mechanism ensures encapsulation of nonsister genomes, which preserves genetic diversity and provides a fitness advantage at the population level...
June 2017: Genetics
https://www.readbyqxmd.com/read/28423184/the-differentiated-and-conserved-roles-of-swi5-sfr1-in-homologous-recombination
#16
REVIEW
Bilge Argunhan, Yasuto Murayama, Hiroshi Iwasaki
Homologous recombination (HR) is the process whereby two DNA molecules that share high sequence similarity are able to recombine to generate hybrid DNA molecules. Throughout evolution, the ability of HR to identify highly similar DNA sequences has been adopted for numerous biological phenomena including DNA repair, meiosis, telomere maintenance, ribosomal DNA amplification, and immunological diversity. Although Rad51 and Dmc1 are the key proteins that promote HR in mitotic and meiotic cells, respectively, accessory proteins that allow Rad51 and Dmc1 to effectively fulfil their functions have been identified in all examined model systems...
April 19, 2017: FEBS Letters
https://www.readbyqxmd.com/read/28396924/non-introgressive-genome-chimerisation-by-malsegregation-in-autodiploidised-allotetraploids-during-meiosis-of-saccharomyces-kudriavzevii-x-saccharomyces-uvarum-hybrids
#17
Edina Karanyicz, Zsuzsa Antunovics, Z Kallai, M Sipiczki
Saccharomyces strains with chimerical genomes consisting of mosaics of the genomes of different species ("natural hybrids") occur quite frequently among industrial and wine strains. The most widely endorsed hypothesis is that the mosaics are introgressions acquired via hybridisation and repeated backcrosses of the hybrids with one of the parental species. However, the interspecies hybrids are sterile, unable to mate with their parents. Here, we show by analysing synthetic Saccharomyces kudriavzevii x Saccharomyces uvarum hybrids that mosaic (chimeric) genomes can arise without introgressive backcrosses...
April 10, 2017: Applied Microbiology and Biotechnology
https://www.readbyqxmd.com/read/28349406/a-computational-approach-to-study-gene-expression-networks
#18
Amir Rubinstein, Yona Kassir
We describe a simple computational approach that can be used for the study and simulation of regulatory networks. The advantage of this approach is that it requires neither computational background nor exact quantitative data about the biological system under study. Moreover, it is suitable for examining alternative hypotheses about the structure of a biological network. We used a tool called BioNSi (Biological Network Simulator) that is based on a simple computational model, which can be easily integrated as part of the lab routine, in parallel to experimental work...
2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/28349396/in-vivo-imaging-of-budding-yeast-meiosis
#19
Michael G Pollard, Jennifer C Fung
Tracking biological events in living cells provides kinetic information about biological processes that can be missed in more traditional methods using fixed samples at designated time intervals. Here we describe a methodology for in vivo fluorescence microscopy of yeast cells undergoing meiosis. This method allows tracking of individual cells over extended periods of time through every stage of the meiotic transformation while minimizing phototoxicity and sustaining conditions that support meiotic growth.
2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/28349395/analysis-of-meiotic-chromosome-associated-protein-dynamics-using-conditional-expression-in-budding-yeast
#20
Amy J MacQueen, Beth Rockmill
The visualization of meiotic chromosomes and their associated protein structures in both wild-type and mutant cells adds valuable insight into the molecular pathways that underlie reproductive cell formation. Here we describe basic methodology for visualizing meiotic chromosomes in a long-standing model organism for investigating the molecular and cell biology of meiosis, the budding yeast, S. cerevisiae. This chapter furthermore highlights a variety of conditional expression regimes that can be used to understand the dynamics and/or developmental constraints of chromosomal protein structures; such dynamic aspects of the macromolecular structures that mediate meiotic chromosome biology are typically not obvious from standard protein visualization experiments...
2017: Methods in Molecular Biology
keyword
keyword
5204
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"