keyword
MENU ▼
Read by QxMD icon Read
search

Neuron, circuit, behavior

keyword
https://www.readbyqxmd.com/read/28445613/neuronal-distribution-of-tyramine-and-the-tyramine-receptor-amtar1-in-the-honeybee-brain
#1
Markus Thamm, Christina Scholl, Tina Reim, Kornelia Grübel, Karin Möller, Wolfgang Rössler, Ricarda Scheiner
Tyramine is an important neurotransmitter, neuromodulator, and neurohormone in insects. In honeybees, it is assumed to have functions in modulating sensory responsiveness and controlling motor behavior. Tyramine can bind to two characterized receptors in honeybees, both of which are coupled to intracellular cAMP pathways. How tyramine acts on neuronal, cellular and circuit levels is unclear. We investigated the spatial brain expression of the tyramine receptor AmTAR1 using a specific antibody. This antibody detects a membrane protein of the expected molecular weight in Western blot analysis...
April 26, 2017: Journal of Comparative Neurology
https://www.readbyqxmd.com/read/28443002/to-wait-or-not-to-wait-separate-mechanisms-in-the-oculomotor-circuit-of-basal-ganglia
#2
Masaharu Yasuda, Okihide Hikosaka
We reach a goal immediately after detecting the target, or later by withholding the immediate action. Each time, we choose one of these actions by suppressing the other. How does the brain control these antagonistic actions? We hypothesized that the output of basal ganglia (BG), substantia nigra pars reticulata (SNr), suppresses antagonistic oculomotor signals by sending strong inhibitory output to superior colliculus (SC). To test this hypothesis, we trained monkeys to perform two kinds of saccade task: Immediate (visually guided) and delayed (visually-withheld but memory-guided) saccade tasks...
2017: Frontiers in Neuroanatomy
https://www.readbyqxmd.com/read/28443001/functional-sub-circuits-of-the-olfactory-system-viewed-from-the-olfactory-bulb-and-the-olfactory-tubercle
#3
REVIEW
Masahiro Yamaguchi
Understanding of the olfactory neural circuits has progressed beyond analysis of how odor information from the external environment is processed in the brain. While spatially-organized sub-circuits were found to exist up to the olfactory bulb (OB), the arrangement in the olfactory cortex (OC), especially in its representative piriform cortex (PC), appears diffuse and dispersed. An emerging view is that the activity of OC neurons may not simply encode odor identity but rather encode plastic odor information such as odor value...
2017: Frontiers in Neuroanatomy
https://www.readbyqxmd.com/read/28441561/neural-circuits-reduced-inhibition-in-fragile-x-syndrome
#4
Randall M Golovin, Kendal Broadie
The Drosophila Fragile X Syndrome model has long generated insights into this devastating neurological disease state. A recent study of olfactory neural circuitry shows that decreased lateral inhibition onto projection neurons relaying sensory input into higher brain centers causes impaired behavior.
April 24, 2017: Current Biology: CB
https://www.readbyqxmd.com/read/28438481/genes-and-neural-circuits-for-sleep-of-the-fruit-fly
#5
REVIEW
Jun Tomita, Gosuke Ban, Kazuhiko Kume
Sleep is a universal physiological state evolutionarily conserved among species, but the molecular basis for its regulation is still largely unknown. Due to its electroencephalogram criteria, sleep has long been investigated and described mostly in mammalian species. The fruit fly, Drosophila melanogaster, has emerged as a genetic model organism for studying sleep. The Drosophila sleep is behaviorally defined, and is tightly regulated by circadian and homeostatic processes, like mammals. Genetic analyses using Drosophila have successfully identified a number of conserved regulatory mechanisms underlying sleep between flies and mammals...
April 21, 2017: Neuroscience Research
https://www.readbyqxmd.com/read/28436982/delay-activity-of-specific-prefrontal-interneuron-subtypes-modulates-memory-guided-behavior
#6
Tsukasa Kamigaki, Yang Dan
Memory-guided behavior requires maintenance of task-relevant information without sensory input, but the underlying circuit mechanism remains unclear. Calcium imaging in mice performing a delayed Go or No-Go task revealed robust delay activity in dorsomedial prefrontal cortex, with different pyramidal neurons signaling Go and No-Go action plans. Inhibiting pyramidal neurons by optogenetically activating somatostatin- or parvalbumin-positive interneurons, even transiently during the delay, impaired task performance, primarily by increasing inappropriate Go responses...
April 24, 2017: Nature Neuroscience
https://www.readbyqxmd.com/read/28436980/amygdala-inputs-to-prefrontal-cortex-guide-behavior-amid-conflicting-cues-of-reward-and-punishment
#7
Anthony Burgos-Robles, Eyal Y Kimchi, Ehsan M Izadmehr, Mary Jane Porzenheim, William A Ramos-Guasp, Edward H Nieh, Ada C Felix-Ortiz, Praneeth Namburi, Christopher A Leppla, Kara N Presbrey, Kavitha K Anandalingam, Pablo A Pagan-Rivera, Melodi Anahtar, Anna Beyeler, Kay M Tye
Orchestrating appropriate behavioral responses in the face of competing signals that predict either rewards or threats in the environment is crucial for survival. The basolateral nucleus of the amygdala (BLA) and prelimbic (PL) medial prefrontal cortex have been implicated in reward-seeking and fear-related responses, but how information flows between these reciprocally connected structures to coordinate behavior is unknown. We recorded neuronal activity from the BLA and PL while rats performed a task wherein competing shock- and sucrose-predictive cues were simultaneously presented...
April 24, 2017: Nature Neuroscience
https://www.readbyqxmd.com/read/28428263/different-requirements-of-functional-telomeres-in-neural-stem-cells-and-terminally-differentiated-neurons
#8
Anastasia Lobanova, Robert She, Simon Pieraut, Charlie Clapp, Anton Maximov, Eros Lazzerini Denchi
Telomeres have been studied extensively in peripheral tissues, but their relevance in the nervous system remains poorly understood. Here, we examine the roles of telomeres at distinct stages of murine brain development by using lineage-specific genetic ablation of TRF2, an essential component of the shelterin complex that protects chromosome ends from the DNA damage response machinery. We found that functional telomeres are required for embryonic and adult neurogenesis, but their uncapping has surprisingly no detectable consequences on terminally differentiated neurons...
April 20, 2017: Genes & Development
https://www.readbyqxmd.com/read/28427008/lateral-hypothalamic-circuits-for-sleep-wake-control
#9
REVIEW
Takayuki Yamashita, Akihiro Yamanaka
The lateral hypothalamic area (LHA) of the diencephalon is crucially involved in controlling instinctive behavior such as sleep-wake cycle and feeding behavior. LHA is a heterogeneous structure that contains spatially intermingled, genetically distinct cell populations. Among LHA neurons, orexin/hypocretin (OX) neuron is the key cell type that promotes waking, and specific loss of OX neurons results in narcolepsy. Melanin-concentrating hormone (MCH) containing neurons are known to be active during rapid eye movement (REM) sleep and stimulation of these neurons promotes REM sleep...
April 17, 2017: Current Opinion in Neurobiology
https://www.readbyqxmd.com/read/28422957/towards-a-theory-of-cortical-columns-from-spiking-neurons-to-interacting-neural-populations-of-finite-size
#10
Tilo Schwalger, Moritz Deger, Wulfram Gerstner
Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50-2000 neurons of the same type but different populations account for different neuron types...
April 19, 2017: PLoS Computational Biology
https://www.readbyqxmd.com/read/28422371/effects-of-m1-and-m4-activation-on-excitatory-synaptic-transmission-in-ca1
#11
Catherine Thorn, Michael Popiolek, Eda Stark, Jeremy Edgerton
Hippocampal networks are particularly susceptible to dysfunction in many neurodegenerative diseases and neuropsychiatric disorders including Alzheimer's disease, Lewy body dementia, and schizophrenia. CA1, a major output region of the hippocampus, receives glutamatergic input from both hippocampal CA3 and entorhinal cortex, via the Schaffer collateral (SC) and temporoammonic (TA) pathways, respectively. SC and TA inputs to CA1 are thought to be differentially involved in the retrieval of previously stored memories versus the encoding of novel information, and switching between these two crucial hippocampal functions is thought to critically depend on acetylcholine (ACh) acting at muscarinic receptors...
April 19, 2017: Hippocampus
https://www.readbyqxmd.com/read/28421605/cholinergic-glutamatergic-co-transmission-in-striatal-cholinergic-interneurons-new-mechanisms-regulating-striatal-computation
#12
REVIEW
Ornela Kljakic, Helena Janickova, Vania F Prado, Marco A M Prado
It is well established that neurons secrete neuropeptides and ATP with classical neurotransmitters; however, certain neuronal populations are also capable of releasing two classical neurotransmitters by a process named co-transmission. Although there has been progress in our understanding of the molecular mechanism underlying co-transmission, the individual regulation of neurotransmitter secretion and the functional significance of this neuronal 'bilingualism' is still unknown. Striatal cholinergic interneurons (CINs) have been shown to secrete glutamate (Glu) in addition to acetylcholine (ACh) and are recognized for their role in the regulation of striatal circuits and behavior...
April 18, 2017: Journal of Neurochemistry
https://www.readbyqxmd.com/read/28417684/toward-a-multiscale-modeling-framework-for-understanding-serotonergic-function
#13
KongFatt Wong-Lin, Da-Hui Wang, Ahmed A Moustafa, Jeremiah Y Cohen, Kae Nakamura
Despite its importance in regulating emotion and mental wellbeing, the complex structure and function of the serotonergic system present formidable challenges toward understanding its mechanisms. In this paper, we review studies investigating the interactions between serotonergic and related brain systems and their behavior at multiple scales, with a focus on biologically-based computational modeling. We first discuss serotonergic intracellular signaling and neuronal excitability, followed by neuronal circuit and systems levels...
April 1, 2017: Journal of Psychopharmacology
https://www.readbyqxmd.com/read/28408414/posterior-parietal-cortex-guides-visual-decisions-in-rats
#14
Angela M Licata, Matthew T Kaufman, David Raposo, Michael B Ryan, John P Sheppard, Anne K Churchland
Neurons in putative decision-making structures can reflect both sensory and decision signals, making their causal role in decisions unclear. Here, we tested whether rat posterior parietal cortex (PPC) is causal for processing visual sensory signals or instead for accumulating evidence for decision alternatives. We optogenetically disrupted PPC activity during decision-making and compared effects on decisions guided by auditory vs. visual evidence. Deficits were largely restricted to visual decisions. To further test for visual dominance in PPC, we evaluated electrophysiological responses following individual sensory events and observed much larger response modulation following visual stimuli than auditory stimuli...
April 13, 2017: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
https://www.readbyqxmd.com/read/28404828/interaction-of-compass-sensing-and-object-motion-detection-in-the-locust-central-complex
#15
Tobias Bockhorst, Uwe Homberg
Goal-directed behavior is often complicated by unpredictable events, such as the appearance of a predator during directed locomotion. This situation requires adaptive responses like evasive maneuvers followed by subsequent reorientation and course correction. Here we study the possible neural underpinnings of such a situation in an insect, the desert locust. As in other insects, its sense of spatial orientation strongly relies on the central complex, a group of midline brain neuropils. The central complex houses sky compass cells that signal the polarization plane of skylight and thus indicate the animal's steering direction relative to the sun...
April 12, 2017: Journal of Neurophysiology
https://www.readbyqxmd.com/read/28402856/chd8-mutation-leads-to-autistic-like-behaviors-and-impaired-striatal-circuits
#16
Randall J Platt, Yang Zhou, Ian M Slaymaker, Ashwin S Shetty, Niels R Weisbach, Jin-Ah Kim, Jitendra Sharma, Mitul Desai, Sabina Sood, Hannah R Kempton, Gerald R Crabtree, Guoping Feng, Feng Zhang
Autism spectrum disorder (ASD) is a heterogeneous disease, but genetically defined models can provide an entry point to studying the molecular underpinnings of this disorder. We generated germline mutant mice with loss-of-function mutations in Chd8, a de novo mutation strongly associated with ASD, and demonstrate that these mice display hallmark ASD behaviors, macrocephaly, and craniofacial abnormalities similar to patient phenotypes. Chd8(+/-) mice display a broad, brain-region-specific dysregulation of major regulatory and cellular processes, most notably histone and chromatin modification, mRNA and protein processing, Wnt signaling, and cell-cycle regulation...
April 11, 2017: Cell Reports
https://www.readbyqxmd.com/read/28401897/label-free-volumetric-optical-imaging-of-intact-murine-brains
#17
Jian Ren, Heejin Choi, Kwanghun Chung, Brett E Bouma
A central effort of today's neuroscience is to study the brain's 'wiring diagram'. The nervous system is believed to be a network of neurons interacting with each other through synaptic connection between axons and dendrites, therefore the neuronal connectivity map not only depicts the underlying anatomy, but also has important behavioral implications. Different approaches have been utilized to decipher neuronal circuits, including electron microscopy (EM) and light microscopy (LM). However, these approaches typically demand extensive sectioning and reconstruction for a brain sample...
April 12, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28401598/dcf1-improves-behavior-deficit-in-drosophila-and-mice-caused-by-optogenetic-suppression
#18
Qiang Liu, Linhua Gan, Jian Ni, Yu Chen, Yanlu Chen, Zhili Huang, Xu Huang, Tieqiao Wen
Optogenetics play a significant role in neuroscientific research by providing a tool for understanding neural circuits and brain functions. Natronomonas pharaonis halorhodopsin (NpHR) actively pumps chloride ions into the cells and hyperpolarizes neuronal membranes in response to yellow light. In this study, we generated transgenic Drosophila expressing NpHR under the control of the Gal4/UAS system and virus-infected mice expressing NpHR to explore the effect of dendritic cell factor 1 (Dcf1) on the behavior mediated by the mushroom body in Drosophila and the dentate gyrus (DG) in mice...
April 12, 2017: Journal of Cellular Biochemistry
https://www.readbyqxmd.com/read/28396882/afferent-fiber-remodeling-in-the-somatosensory-thalamus-of-mice-as-a-neural-basis-of-somatotopic-reorganization-in-the-brain-and-ectopic-mechanical-hypersensitivity-after-peripheral-sensory-nerve-injury
#19
Yuichi Takeuchi, Hironobu Osaki, Yuki Yagasaki, Yoko Katayama, Mariko Miyata
Plastic changes in the CNS in response to peripheral sensory nerve injury are a series of complex processes, ranging from local circuit remodeling to somatotopic reorganization. However, the link between circuit remodeling and somatotopic reorganization remains unclear. We have previously reported that transection of the primary whisker sensory nerve causes the abnormal rewiring of lemniscal fibers (sensory afferents) on a neuron in the mouse whisker sensory thalamus (V2 VPM). In the present study, using transgenic mice whose lemniscal fibers originate from the whisker sensory principle trigeminal nucleus (PrV2) are specifically labeled, we identified that the transection induced retraction of PrV2-originating lemniscal fibers and invasion of those not originating from PrV2 in the V2 VPM...
March 2017: ENeuro
https://www.readbyqxmd.com/read/28393261/addressing-sufficiency-of-the-cb1-receptor-for-endocannabinoid-mediated-functions-through-conditional-genetic-rescue-in-forebrain-gabaergic-neurons
#20
Floortje Remmers, Maren D Lange, Martina Hamann, Sabine Ruehle, Hans-Christian Pape, Beat Lutz
Genetic inactivation of the cannabinoid CB1 receptor gene in different cell types in the brain has previously revealed necessary functions for distinct synaptic plasticity processes and behaviors. Here, we sought to identify CB1 receptor expression sites that are minimally required to reconstruct normal phenotypes. In a CB1-null background, we re-expressed endogenous CB1 receptors in forebrain GABAergic neurons, thereby assessing the sufficiency of CB1 receptors. Depolarization-induced suppression of inhibitory, but not excitatory, transmission was restored in hippocampal and amygdalar circuits...
April 9, 2017: Brain Structure & Function
keyword
keyword
5198
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"