Read by QxMD icon Read

Drosophila RNA decay

Madalena M Reimão-Pinto, Raphael A Manzenreither, Thomas R Burkard, Pawel Sledz, Martin Jinek, Karl Mechtler, Stefan L Ameres
The posttranscriptional addition of nucleotides to the 3' end of RNA regulates the maturation, function, and stability of RNA species in all domains of life. Here, we show that in flies, 3' terminal RNA uridylation triggers the processive, 3'-to-5' exoribonucleolytic decay via the RNase II/R enzyme CG16940, a homolog of the human Perlman syndrome exoribonuclease Dis3l2. Together with the TUTase Tailor, dmDis3l2 forms the cytoplasmic, terminal RNA uridylation-mediated processing (TRUMP) complex that functionally cooperates in the degradation of structured RNA RNA immunoprecipitation and high-throughput sequencing reveals a variety of TRUMP complex substrates, including abundant non-coding RNA, such as 5S rRNA, tRNA, snRNA, snoRNA, and the essential RNase MRP Based on genetic and biochemical evidence, we propose a key function of the TRUMP complex in the cytoplasmic quality control of RNA polymerase III transcripts...
October 11, 2016: EMBO Journal
Sahil Sharma, Fabian Poetz, Marius Bruer, Thi Bach Nga Ly-Hartig, Johanna Schott, Bertrand Séraphin, Georg Stoecklin
Acetylation of histones and transcription-related factors is known to exert epigenetic and transcriptional control of gene expression. Here we report that histone acetyltransferases (HATs) and histone deacetylases (HDACs) also regulate gene expression at the posttranscriptional level by controlling poly(A) RNA stability. Inhibition of HDAC1 and HDAC2 induces massive and widespread degradation of normally stable poly(A) RNA in mammalian and Drosophila cells. Acetylation-induced RNA decay depends on the HATs p300 and CBP, which acetylate the exoribonuclease CAF1a, a catalytic subunit of the CCR4-CAF1-NOT deadenlyase complex and thereby contribute to accelerating poly(A) RNA degradation...
September 15, 2016: Molecular Cell
Yan Jiang, Yanping Zhu, Zhi-Jie Liu, Songying Ouyang
RNA helicases are involved in almost every aspect of RNA, from transcription to RNA decay. DExD/H-box helicases comprise the largest SF2 helicase superfamily, which are characterized by two conserved RecA-like domains. In recent years, an increasing number of unexpected functions of these proteins have been discovered. They play important roles not only in innate immune response but also in diseases like cancers and chronic hepatitis C. In this review, we summarize the recent literatures on one member of the SF2 superfamily, the DEAD-box protein DDX41...
August 9, 2016: Protein & Cell
Prajal H Patel, Scott A Barbee, J Todd Blankenship
Non-translating RNAs that have undergone active translational repression are culled from the cytoplasm into P-bodies for decapping-dependent decay or for sequestration. Organisms that use microRNA-mediated RNA silencing have an additional pathway to remove RNAs from active translation. Consequently, proteins that govern microRNA-mediated silencing, such as GW182/Gw and AGO1, are often associated with the P-bodies of higher eukaryotic organisms. Due to the presence of Gw, these structures have been referred to as GW-bodies...
2016: PloS One
Christiane Harnisch, Simona Cuzic-Feltens, Juliane C Dohm, Michael Götze, Heinz Himmelbauer, Elmar Wahle
Post-transcriptional 3' end addition of nucleotides is important in a variety of RNA decay pathways. We have examined the 3' end addition of nucleotides during the decay of the Hsp70 mRNA and a corresponding reporter RNA in Drosophila S2 cells by conventional sequencing of cDNAs obtained after mRNA circularization and by deep sequencing of dedicated libraries enriched for 3' decay intermediates along the length of the mRNA. Approximately 5%-10% of 3' decay intermediates carried nonencoded oligo(A) tails with a mean length of 2-3 nucleotides...
March 2016: RNA
Marcus H Stoiber, Sara Olson, Gemma E May, Michael O Duff, Jan Manent, Robert Obar, K G Guruharsha, Peter J Bickel, Spyros Artavanis-Tsakonas, James B Brown, Brenton R Graveley, Susan E Celniker
In eukaryotic cells, RNAs exist as ribonucleoprotein particles (RNPs). Despite the importance of these complexes in many biological processes, including splicing, polyadenylation, stability, transportation, localization, and translation, their compositions are largely unknown. We affinity-purified 20 distinct RNA-binding proteins (RBPs) from cultured Drosophila melanogaster cells under native conditions and identified both the RNA and protein compositions of these RNP complexes. We identified "high occupancy target" (HOT) RNAs that interact with the majority of the RBPs we surveyed...
November 2015: Genome Research
Bridlin Barckmann, Stéphanie Pierson, Jérémy Dufourt, Catherine Papin, Claudia Armenise, Fillip Port, Thomas Grentzinger, Séverine Chambeyron, Grégory Baronian, Jean-Pierre Desvignes, Tomaz Curk, Martine Simonelig
The Piwi-interacting RNA (piRNA) pathway plays an essential role in the repression of transposons in the germline. Other functions of piRNAs such as post-transcriptional regulation of mRNAs are now emerging. Here, we perform iCLIP with the PIWI protein Aubergine (Aub) and identify hundreds of maternal mRNAs interacting with Aub in the early Drosophila embryo. Gene expression profiling reveals that a proportion of these mRNAs undergo Aub-dependent destabilization during the maternal-to-zygotic transition. Strikingly, Aub-dependent unstable mRNAs encode germ cell determinants...
August 18, 2015: Cell Reports
Sophie R Robinson, Antony W Oliver, Timothy J Chevassut, Sarah F Newbury
DIS3 is a conserved exoribonuclease and catalytic subunit of the exosome, a protein complex involved in the 3' to 5' degradation and processing of both nuclear and cytoplasmic RNA species. Recently, aberrant expression of DIS3 has been found to be implicated in a range of different cancers. Perhaps most striking is the finding that DIS3 is recurrently mutated in 11% of multiple myeloma patients. Much work has been done to elucidate the structural and biochemical characteristics of DIS3, including the mechanistic details of its role as an effector of RNA decay pathways...
2015: Biomolecules
John D Laver, Xiao Li, Debashish Ray, Kate B Cook, Noah A Hahn, Syed Nabeel-Shah, Mariana Kekis, Hua Luo, Alexander J Marsolais, Karen Yy Fung, Timothy R Hughes, J Timothy Westwood, Sachdev S Sidhu, Quaid Morris, Howard D Lipshitz, Craig A Smibert
BACKGROUND: Brain tumor (BRAT) is a Drosophila member of the TRIM-NHL protein family. This family is conserved among metazoans and its members function as post-transcriptional regulators. BRAT was thought to be recruited to mRNAs indirectly through interaction with the RNA-binding protein Pumilio (PUM). However, it has recently been demonstrated that BRAT directly binds to RNA. The precise sequence recognized by BRAT, the extent of BRAT-mediated regulation, and the exact roles of PUM and BRAT in post-transcriptional regulation are unknown...
2015: Genome Biology
Ajeet Mandal, Swati Mandal, Myung Hee Park
The eukaryotic translation factor, eIF5A has been recently reported as a sequence-specific elongation factor that facilitates peptide bond formation at consecutive prolines in Saccharomyces cerevisiae, as its ortholog elongation factor P (EF-P) does in bacteria. We have searched the genome databases of 35 representative organisms from six kingdoms of life for PPP (Pro-Pro-Pro) and/or PPG (Pro-Pro-Gly)-encoding genes whose expression is expected to depend on eIF5A. We have made detailed analyses of proteome data of 5 selected species, Escherichia coli, Saccharomyces cerevisiae, Drosophila melanogaster, Mus musculus and Homo sapiens...
2014: PloS One
Youn-Jeong Choi, Wi S Lai, Robert Fedic, Deborah J Stumpo, Weichun Huang, Leping Li, Lalith Perera, Brandy Y Brewer, Gerald M Wilson, James M Mason, Perry J Blackshear
Members of the mammalian tristetraprolin family of CCCH tandem zinc finger proteins can bind to certain AU-rich elements (AREs) in mRNAs, leading to their deadenylation and destabilization. Mammals express three or four members of this family, but Drosophila melanogaster and other insects appear to contain a single gene, Tis11. We found that recombinant Drosophila Tis11 protein could bind to ARE-containing RNA oligonucleotides with low nanomolar affinity. Remarkably, co-expression in mammalian cells with "target" RNAs demonstrated that Tis11 could promote destabilization of ARE-containing mRNAs and that this was partially dependent on a conserved C-terminal sequence resembling the mammalian NOT1 binding domain...
December 19, 2014: Journal of Biological Chemistry
Takashi Fukaya, Hiro-Oki Iwakawa, Yukihide Tomari
miRNAs silence their complementary target mRNAs by translational repression as well as by poly(A) shortening and mRNA decay. In Drosophila, miRNAs are typically incorporated into Argonaute1 (Ago1) to form the effector complex called RNA-induced silencing complex (RISC). Ago1-RISC associates with a scaffold protein GW182, which recruits additional silencing factors. We have previously shown that miRNAs repress translation initiation by blocking formation of the 48S and 80S ribosomal complexes. However, it remains unclear how ribosome recruitment is impeded...
October 2, 2014: Molecular Cell
Felix Hövelmann, Imre Gaspar, Simon Loibl, Eugeny A Ermilov, Beate Röder, Jesper Wengel, Anne Ephrussi, Oliver Seitz
Imaging the dynamics of RNA in living cells is usually performed by means of transgenic approaches that require modification of RNA targets and cells. Fluorogenic hybridization probes would also allow the analysis of wild-type organisms. We developed nuclease-resistant DNA forced intercalation (FIT) probes that combine the high enhancement of fluorescence upon hybridization with the high brightness required to allow tracking of individual ribonucleotide particles (RNPs). In our design, a single thiazole orange (TO) intercalator dye is linked as a nucleobase surrogate and an adjacent locked nucleic acid (LNA) unit serves to introduce a local constraint...
October 13, 2014: Angewandte Chemie
Andreas Schüler, Avazeh T Ghanbarian, Laurence D Hurst
There are two strong and equally important predictors of rates of human protein evolution: The amount the gene is expressed and the proportion of exonic sequence devoted to control splicing, mediated largely by selection on exonic splice enhancer (ESE) motifs. Is the same true for noncoding RNAs, known to be under very weak purifying selection? Prior evidence suggests that selection at splice sites in long intergenic noncoding RNAs (lincRNAs) is important. We now report multiple lines of evidence indicating that the great majority of purifying selection operating on lincRNAs in humans is splice related...
December 2014: Molecular Biology and Evolution
Dipen Rajgor, Catherine M Shanahan
In eukaryotic cells, non-translating mRNAs can accumulate into cytoplasmic mRNP (messenger ribonucleoprotein) granules such as P-bodies (processing bodies) and SGs (stress granules). P-bodies contain the mRNA decay and translational repression machineries and are ubiquitously expressed in mammalian cells and lower eukaryote species including Saccharomyces cerevisiae, Drosophila melanogaster and Caenorhabditis elegans. In contrast, SGs are only detected during cellular stress when translation is inhibited and form from aggregates of stalled pre-initiation complexes...
August 2014: Biochemical Society Transactions
Rippei Hayashi, Dominik Handler, David Ish-Horowicz, Julius Brennecke
Splicing of pre-mRNAs results in the deposition of the exon junction complex (EJC) upstream of exon-exon boundaries. The EJC plays crucial post-splicing roles in export, translation, localization, and nonsense-mediated decay of mRNAs. It also aids faithful splicing of pre-mRNAs containing large introns, albeit via an unknown mechanism. Here, we show that the core EJC plus the accessory factors RnpS1 and Acinus aid in definition and efficient splicing of neighboring introns. This requires prior deposition of the EJC in close proximity to either an upstream or downstream splicing event...
August 15, 2014: Genes & Development
Claudia Temme, Martine Simonelig, Elmar Wahle
Controlled shortening of the poly(A) tail of mRNAs is the first step in eukaryotic mRNA decay and can also be used for translational inactivation of mRNAs. The CCR4-NOT complex is the most important among a small number of deadenylases, enzymes catalyzing poly(A) tail shortening. Rates of poly(A) shortening differ between mRNAs as the CCR4-NOT complex is recruited to specific mRNAs by means of either sequence-specific RNA binding proteins or miRNAs. This review summarizes our current knowledge concerning the subunit composition and deadenylation activity of the Drosophila CCR4-NOT complex and the mechanisms by which the complex is recruited to particular mRNAs...
2014: Frontiers in Genetics
Shengbo Fu, Chung-Yi Nien, Hsiao-Lan Liang, Christine Rushlow
Transcription factors and microRNAs (miRNAs) are two important classes of trans-regulators in differential gene expression. Transcription factors occupy cis-regulatory motifs in DNA to activate or repress gene transcription, whereas miRNAs specifically pair with seed sites in target mRNAs to trigger mRNA decay or inhibit translation. Dynamic spatiotemporal expression patterns of transcription factors and miRNAs during development point to their stage- and tissue-specific functions. Recent studies have focused on miRNA functions during development; however, much remains to explore regarding how the expression of miRNAs is initiated and how dynamic miRNA expression patterns are achieved by transcriptional regulatory networks at different developmental stages...
May 2014: Development
Vera B Kaiser, Doris Bachtrog
BACKGROUND: The Drosophila miranda neo-sex chromosome system is a useful resource for studying recently evolved sex chromosomes. However, the neo-Y genomic assembly is fragmented due to the accumulation of repetitive sequence. Furthermore, the separate assembly of the neo-X and neo-Y chromosomes into genomic scaffolds has proven to be difficult, due to their low level of sequence divergence, which in coding regions is about 1.5%. Here, we de novo assemble the transcriptome of D. miranda using RNA-seq data from several male and female tissues, and develop a bioinformatic pipeline to separately reconstruct neo-X and neo-Y transcripts...
2014: BMC Genomics
Susana de Lucas, Juan Carlos Oliveros, Mónica Chagoyen, Juan Ortín
Cellular messenger RNAs (mRNAs) are associated to proteins in the form of ribonucleoprotein particles. The double-stranded RNA-binding (DRB) proteins play important roles in mRNA synthesis, modification, activity and decay. Staufen is a DRB protein involved in the localized translation of specific mRNAs during Drosophila early development. The human Staufen1 (hStau1) forms RNA granules that contain translation regulation proteins as well as cytoskeleton and motor proteins to allow the movement of the granule on microtubules, but the mechanisms of hStau1-RNA recognition are still unclear...
April 2014: Nucleic Acids Research
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"