Read by QxMD icon Read


Danielle Oliveira Dos Anjos, Eliomara Sousa Sobral Alves, Vinicius Tomaz Gonçalves, Sheila Suarez Fontes, Mateus Lima Nogueira, Ana Márcia Suarez-Fontes, João Batista Neves da Costa, Fabricio Rios-Santos, Marcos André Vannier-Santos
Natural products comprise valuable sources for new antiparasitic drugs. Here we tested the effects of a novel β-lapachone derivative on Trypanosoma cruzi parasite survival and proliferation and used microscopy and cytometry techniques to approach the mechanism(s) underlying parasite death. The selectivity index determination indicate that the compound trypanocidal activity was over ten-fold more cytotoxic to epimastigotes than to macrophages or splenocytes. Scanning electron microscopy analysis revealed that the R72 β-lapachone derivative affected the T...
October 12, 2016: International Journal for Parasitology, Drugs and Drug Resistance
Lin Fu, Jinlong Shi, Anqi Liu, Lei Zhou, Mengmeng Jiang, Huaping Fu, Keman Xu, Dandan Li, Ailing Deng, Qingyi Zhang, Yifan Pang, Yujie Guo, Kai Hu, Jiansuo Zhou, Yapeng Wang, Wenrong Huang, Yu Jing, Liping Dou, Lili Wang, Kailin Xu, Xiaoyan Ke, Clara Nervi, Yonghui Li, Li Yu
MicroRNA-9-1(miR-9-1) plays an important role in the mechanism that regulates the lineage fate of differentiating hematopoietic cells. Recent studies have shown that miR-9-1 is downregulated in t (8; 21) AML. However, the pathogenic mechanisms underlying miR-9-1 down-regulation and the RUNX1-RUNX1T1 fusion protein, generated from the translocation of t (8; 21) in AML, remain unclear. RUNX1-RUNX1T1 can induce leukemogenesis through resides in and functions as a stable RUNX1-RUNX1T1-containing transcription factor complex...
October 22, 2016: International Journal of Cancer. Journal International du Cancer
Masayuki Tsuzuki, Yuichiro Watanabe
Small RNAs are key molecules in RNA silencing pathways that exert the sequence-specific regulation of gene expression and chromatin modifications in many eukaryotes. In plants, endogenous small RNAs, including microRNAs (miRNAs), trans-acting short interfering RNAs (tasiRNAs), and heterochromatic siRNAs (hc-siRNAs), play an important role in switching or orchestrating biological processes during the development and at the onset of stress responses. These endogenous and exogenous small RNAs are mainly 20-24 nucleotides in length...
2017: Methods in Molecular Biology
Palak Kathiria, Igor Kovalchuk
Epigenetic regulation in the plant genome is associated with the determination of expression patterns of various genes. Methylation of DNA at cytosine residues is one of the mechanisms of epigenetic regulation and has been a subject of various studies. Various techniques have been developed to analyze DNA methylation, most of which involve isolation of chromatin from cells and further in vitro studies. Limited techniques are available for in situ study of DNA methylation in plants. Here, we present such an in situ method for DNA methylation analysis which has high sensitivity and good reproducibility...
2017: Methods in Molecular Biology
Andriy Bilichak, Igor Kovalchuk
DNA methylation is a reversible covalent chemical modification of DNA intended to regulate chromatin structure and gene expression in a cell- and tissue-specific manner and in response to the environment. Cytosine methylation is predominantly occurring in plants, and cytosine nucleotides in plants can be methylated at symmetrical (CpG and CpHpG) and nonsymmetrical sites. Although there exists a number of various methods for the detection of cytosine methylation, most of them are either laborious or expensive or both...
2017: Methods in Molecular Biology
Andriy Bilichak, Igor Kovalchuk
DNA methylation is a heritable but reversible epigenetic mechanism of control over gene expression. The level of DNA methylation of specific genomic regions correlates with chromatin condensation, the level of gene expression, and in some cases genome stability and the frequency of homologous recombination. Here, we describe the combined bisulfite restriction analysis (COBRA) assay that allows analyzing the methylation status at a specific locus. The protocol consists of the following major steps: bisulfite conversion of non-methylated cytosines to uracils, the locus-specific PCR amplification of converted DNA, restriction digestion, the analysis of restriction patterns on the gel, and the quantification of these restriction patterns using ImageJ or a similar program...
2017: Methods in Molecular Biology
Julia Engelhorn, Franziska Turck
Genome-wide analyses of chromatin factor-binding sites or histone modification localization generate lists of up to several thousand potential target genes. For many model organisms, large annotation databases are available to help with the characterization and classification of genomic datasets. The term meta-analysis has been coined for this type of multi-database comparison. In this chapter, we describe a workflow to perform a transcriptional and functional analysis of genome-wide target genes. Sources of transcription data and clustering tools to subdivide genes according to their expression pattern are described...
2017: Methods in Molecular Biology
Stefan Grob, Ueli Grossniklaus
Nuclear organization and higher-order chromosome structure in interphase nuclei are thought to have important effects on fundamental biological processes, including chromosome condensation, replication, and transcription. Until recently, however, nuclear organization could only be analyzed microscopically. The development of chromatin conformation capture (3C)-based techniques now allows a detailed look at chromosomal architecture from the level of individual loci to the entire genome. Here we provide a robust Hi-C protocol, allowing the analysis of nuclear organization in nuclei from different wild-type and mutant plant tissues...
2017: Methods in Molecular Biology
Wanhui You, Stéphane Pien, Ueli Grossniklaus
Epigenetic control of plant development via histone modifications is involved in different processes ranging from embryonic development, vegetative development, flowering time control, floral organ development, to pollen tube growth. The identification of an increasing number of epigenetically regulated processes was greatly advanced by methods allowing the survey of genome-wide histone modifications and chromatin-protein interactions. However, genome-wide approaches are too broad to access in detail a large number of histone modifications taking place at a single locus...
2017: Methods in Molecular Biology
Gabor Nagy, Viktoria Baksa, Alexandra Kiss, Melinda Turani, Gaspar Banfalvi
The toxicity of gadolinium is reduced by chelating agents that render this heavy metal into contrast complexes used for medical magnetic resonance imaging. However, the dissociation of gadolinium chelates is known to generate Gd(3+) ions, the cellular toxicity of which has not been tested in details. The cytotoxic effects of Gd(III) ions were evaluated by monitoring the proliferation, measuring the cellular motility and following chromatin changes in various cell lines upon Gd(3+) treatment. Measurements applied long-term scanning microscopy and a perfusion platform that replaced the medium with test solutions, bypassed physical contact with the cell culture during experiments, and provided uninterrupted high time-resolution time-lapse photomicrography for an extended period of time...
October 22, 2016: Apoptosis: An International Journal on Programmed Cell Death
Akhi Akhter, Emanuel Rosonina
The Saccharomyces cerevisiae transcription factor Gcn4 is expressed during amino acid starvation and its abundance is controlled by ubiquitin-mediated proteolysis. Cdk8, a kinase component of the RNA polymerase II Mediator complex, phosphorylates Gcn4 which triggers its ubiquitination/proteolysis and is thought to link Gcn4 degradation with transcription of target genes. In addition to phosphorylation and ubiquitination, we previously showed that Gcn4 becomes sumoylated in a DNA-binding dependent manner, while a non-sumoylatable form of Gcn4 showed increased chromatin occupancy, but only if Cdk8 was present...
October 21, 2016: Genetics
(no author information available yet)
DNA duplications that overlap topologically associated domain (TAD) boundaries can create new TADs.
October 21, 2016: Cancer Discovery
Federico Zambelli, Giulio Pavesi
NF-Y is a trimeric transcription factor that binds on DNA the CCAAT-box motif. In this article we reviewed and complemented with additional bioinformatic analysis existing data on genome-wide NF-Y binding characterization in human, reaching the following main conclusions: (1) about half of NF-Y binding sites are located at promoters, about 60-80 base pairs from transcription start sites; NF-Y binding to distal genomic regions takes place at inactive chromatin loci and/or DNA repetitive elements more often than active enhancers; (2) on almost half of its binding sites, regardless of their genomic localization (promoters or distal regions), NF-Y finds on DNA more than one CCAAT-box, and most of those multiple CCAAT binding loci present precise spacing and organization of the elements composing them; (3) there exists a well defined class of transcription factors that show genome-wide co-localization with NF-Y...
October 18, 2016: Biochimica et Biophysica Acta
Deepika Jaiswal, Rashi Turniansky, Erin M Green
When yeast cells are challenged by a fluctuating environment, signaling networks activate differentiation programs that promote their individual or collective survival. These programs include the initiation of meiotic sporulation, the formation of filamentous growth structures, and the activation of programmed cell death pathways. The establishment and maintenance of these distinct cell fates are driven by massive gene expression programs that promote the necessary changes in morphology and physiology. While these genomic reprogramming events depend on a specialized network of transcription factors, a diverse set of chromatin regulators, including histone-modifying enzymes, chromatin remodelers, and histone variants, also play essential roles...
October 18, 2016: Journal of Molecular Biology
Marwa A A Ibrahim, Ebtsam F Okasha
Genetically modified (GM) plants expressing insecticidal traits offer a new strategy for crop protection. GM-corn contains Bacillus thuringiensis (Bt) genes producing delta endotoxins in the whole plant. Diet can influence the characteristics of the gastrointestinal tract altering its function and structure. The aim of this study was to evaluate the effect of GM-corn on the histological structure of jejunal mucosa of adult male albino rat using different histological, immunohistochemical and morphometrical methods...
October 18, 2016: Experimental and Toxicologic Pathology: Official Journal of the Gesellschaft Für Toxikologische Pathologie
Srimoyee Ghosh, Jose M Lora
Epigenetic control of gene expression is enforced in part through histone modifications. Bromodomain and extra terminal domain (BET) proteins function as crucial chromatin readers, responsible for interpretation of the chromatin code in diverse cellular contexts, ultimately impacting gene transcription. BET proteins can play a major role in inflammation by profoundly affecting the biology of the Thelper 17 (TH17) lineage. We summarize recent studies focusing on BET inhibition as a viable therapeutic alternative for the control of autoimmune diseases driven by aberrant activation of TH17 cells...
March 2016: Drug Discovery Today. Technologies
Jamel Meslamani, Steven G Smith, Roberto Sanchez, Ming-Ming Zhou
Bromodomains are conserved structural modules responsible for recognizing acetylated-lysine residues on histone tails and other transcription-associated proteins, such as transcription factors and co-factors. Owing to their important functions in the regulation of ordered gene transcription in chromatin, bromodomains of the BET family proteins have recently been shown as druggable targets for a wide array of human diseases, including cancer and inflammation. Here we review the structural and functional features of the bromodomains and their small-molecule inhibitors...
March 2016: Drug Discovery Today. Technologies
Ester Fernandez-Salas, Shaomeng Wang, Arul M Chinnaiyan
Castration resistant prostate cancer (CRPC) is a deadly disease with few therapeutic options once patients become resistant to second generation drugs targeting the AR-transcriptional program. The BET-BRD readers of chromatin are key regulators of AR-, ERG-, and c-Myc-mediated transcription in CRPC. BET-BRD inhibitors have demonstrated pre-clinical efficacy in models of CRPC and are currently being evaluated in several clinical trials. These novel drugs have the potential to transform the way we treat CRPC in the near future...
March 2016: Drug Discovery Today. Technologies
Cheng-Ming Chiang
BRD4 is an epigenetic regulator and transcription cofactor whose phosphorylation by CK2 and dephosphorylation by PP2A modulates its function in chromatin targeting, factor recruitment, and cancer progression. While the bromodomains of BET family proteins, including BRD4, BRD2, BRD3 and BRDT, have been the primary targets of small compounds such as JQ1, I-BET and MS417 that show promising anticancer effects against some hematopoietic cancer and solid tumors, drug resistance upon prolonged treatment necessitates a better understanding of alternative pathways underlying not only the resistance but also persistent BET protein dependence for identifying new targets and effective combination therapy strategies...
March 2016: Drug Discovery Today. Technologies
Yuxin Shu, Yan Lu, Xiaojuan Pang, Wei Zheng, Yahong Huang, Jiahong Li, Jianguo Ji, Can Zhang, Pingping Shen
Peroxisome proliferator-activating receptor γ (PPARγ), a transcription factor, is involved in many important biological processes, including cell terminal differentiation, survival and apoptosis. However, the role of PPARγ, which regulates tumour promoter and oncogene expression, is not well understood in hepatocellular carcinoma (HCC). In the present study, based on evidence from clinical samples that phosphorylation of PPARγ at Ser84 is up-regulated in human liver tumours, we confirmed that phosphorylation of PPARγ was also significantly increased in an HCC mouse model and was increased by Mitogen-activated protein kinase (MEK)/ Extracellular-signal-regulated kinases (ERK) kinase...
October 19, 2016: Oncotarget
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"