Read by QxMD icon Read

voltage sensor

Inyoung Lee, Takashi Sode, Noya Loew, Wakako Tsugawa, Christopher Robin Lowe, Koji Sode
An ultimate goal for those engaged in research to develop implantable medical devices is to develop mechatronic implantable artificial organs such as artificial pancreas. Such devices would comprise at least a sensor module, an actuator module, and a controller module. For the development of optimal mechatronic implantable artificial organs, these modules should be self-powered and autonomously operated. In this study, we aimed to develop a microcontroller using the BioCapacitor principle. A direct electron transfer type glucose dehydrogenase was immobilized onto mesoporous carbon, and then deposited on the surface of a miniaturized Au electrode (7mm(2)) to prepare a miniaturized enzyme anode...
September 28, 2016: Biosensors & Bioelectronics
Yu Chen, Xiaojing Mu, Tao Wang, Weiwei Ren, Ya Yang, Zhong Lin Wang, Chengliang Sun, Alex Yuandong Gu
Here, we report a stable and predictable aero-elastic motion in the flow-driven energy harvester, which is different from flapping and vortex-induced-vibration (VIV). A unified theoretical frame work that describes the flutter phenomenon observed in both "stiff" and "flexible" materials for flow driven energy harvester was presented in this work. We prove flutter in both types of materials is the results of the coupled effects of torsional and bending modes. Compared to "stiff" materials, which has a flow velocity-independent flutter frequency, flexible material presents a flutter frequency that almost linearly scales with the flow velocity...
October 14, 2016: Scientific Reports
Isacco Gualandi, Domenica Tonelli, Federica Mariani, Erika Scavetta, Marco Marzocchi, Beatrice Fraboni
An all PEDOT:PSS Organic Electrochemical Transistor (OECT) has been developed and used for the selective detection of dopamine (DA) in the presence of interfering compounds (ascorbic acid, AA and uric acid, UA). The selective response has been implemented using a potentiodynamic approach, by varying the operating gate voltage and the scan rate. The trans-conductance curves allow to obtain a linear calibration plot for AA, UA and DA and to separate the redox waves associated to each compound; for this purpose, the scan rate is an important parameter to achieve a good resolution...
October 14, 2016: Scientific Reports
Victor I Kleshch, Stephen T Purcell, Alexander N Obraztsov
Diamond has been considered to be one of the most attractive materials for cold-cathode applications during past two decades. However, its real application is hampered by the necessity to provide appropriate amount and transport of electrons to emitter surface which is usually achieved by using nanometer size or highly defective crystallites having much lower physical characteristics than the ideal diamond. Here, for the first time the use of single crystal diamond emitter with high aspect ratio as a point electron source is reported...
October 12, 2016: Scientific Reports
Hyeon Jun Sim, Changsoon Choi, Shi Hyeong Kim, Kang Min Kim, Chang Jun Lee, Youn Tae Kim, Xavier Lepró, Ray H Baughman, Seon Jeong Kim
Stretchable fiber and yarn triboelectric nanogenerator are sought for such applications as wearable sensing system such as cloth communication devices, electronic textiles, and robotic sensory skin. Unfortunately, previously reported triboelectric fiber and yarn are difficult to have stretchable property. We introduce here a new type of stretchable and weavable triboelectric fibers with microdiameter dimensions. The stretchable triboelectric fibers can be reversibly stretched up to 50% in tensile direction while generating voltage output proportional to the applied tensile strain...
October 11, 2016: Scientific Reports
Yongke Yan, Jie E Zhou, Deepam Maurya, Yu U Wang, Shashank Priya
A rapid surge in the research on piezoelectric sensors is occurring with the arrival of the Internet of Things. Single-phase oxide piezoelectric materials with giant piezoelectric voltage coefficient (g, induced voltage under applied stress) and high Curie temperature (Tc) are crucial towards providing desired performance for sensing, especially under harsh environmental conditions. Here, we report a grain-oriented (with 95% <001> texture) modified PbTiO3 ceramic that has a high Tc (364 °C) and an extremely large g33 (115 × 10(-3) Vm N(-1)) in comparison with other known single-phase oxide materials...
October 11, 2016: Nature Communications
Deepika Sharma, Brijendra Kumar Tiwari, Subhash Mehto, Cecil Antony, Gunjan Kak, Yogendra Singh, Krishnamurthy Natarajan
The prevalence of Mycobacterium tuberculosis (M. tb) strains eliciting drug resistance has necessitated the need for understanding the complexities of host pathogen interactions. The regulation of calcium homeostasis by Voltage Gated Calcium Channel (VGCCs) upon M. tb infection has recently assumed importance in this area. We previously showed a suppressor role of VGCC during M. tb infections and recently reported the mechanisms of its regulation by M. tb. Here in this report, we further characterize the role of VGCC in mediating defence responses of macrophages during mycobacterial infection...
2016: PloS One
Leimiao Lin, Dong Liu, Qiaofen Chen, Hongzhi Zhou, Jianmin Wu
Novel chemiresistive gas sensors based on a vertical tip-tip contact silicon nanowire (TTC-SiNW) array were constructed. The welding of TTC-SiNWs after joule heating treatment was confirmed by a current-voltage curve (I-V curve). The TTC-SiNW structure not only resolved the problem of electrode contact encountered in conventional nanowire sensors, but also elongated the nanowire length to increase the void space for fast gas diffusion. The TTC-SiNW sensor comprising the same two types of SiNW arrays responded to NO2 very sensitively...
October 7, 2016: Nanoscale
Keng-Te Lin, Hsuen-Li Chen, Yu-Sheng Lai
A simple structure, efficient color splitting, sufficient output of electrical signals, and low power consumption are the important characteristics of contemporary devices for color sensing. In this study, we developed filter-free, junctionless structures that exhibited a superior photo-thermo-electrical response under a low bias voltage and a short response time in milliseconds. Although our compact sensor had a simple single-layer trench-like aluminum (Al) structure, it could perform multiple functions, including light harvesting, color-selective absorption, photo-thermo-electrical transformation, and the ability to collect photoinduced differences in electrical signals...
September 29, 2016: Nanoscale
Ofra Barchad-Avitzur, Michael F Priest, Noa Dekel, Francisco Bezanilla, Hanna Parnas, Yair Ben-Chaim
G protein-coupled receptors (GPCRs) mediate many signal transduction processes in the body. The discovery that these receptors are voltage-sensitive has changed our understanding of their behavior. The M2 muscarinic acetylcholine receptor (M2R) was found to exhibit depolarization-induced charge movement-associated currents, implying that this prototypical GPCR possesses a voltage sensor. However, the typical domain that serves as a voltage sensor in voltage-gated channels is not present in GPCRs, making the search for the voltage sensor in the latter challenging...
October 4, 2016: Biophysical Journal
Derya Erdem, Nicholas S Bingham, Florian J Heiligtag, Nicolas Pilet, Peter Warnicke, Carlos A F Vaz, Yanuo Shi, Michele Buzzi, Jennifer L M Rupp, Laura J Heyderman, Markus Niederberger
Multiferroic composite materials combining ferroelectric and ferromagnetic order at room temperature have great potential for emerging applications such as four-state-memories, magnetoelectric sensors and microwave devices. In this paper, we report an effective and facile liquid phase deposition route to create multiferroic composite thin films involving the spin-coating of nanoparticle dispersions of BaTiO3, a well-known ferroelectric, and CoFe2O4, a highly magnetostrictive material. This approach offers great flexibility in terms of accessible film configurations (co-dispersed as well as layered films), thicknesses (from hundred nm to several µm) and composition (5-50 wt% CoFe2O4 with respect to BaTiO3) to address various potential applications...
October 5, 2016: ACS Nano
Rei Shiwaku, Yasunori Takeda, Takashi Fukuda, Kenjiro Fukuda, Hiroyuki Matsui, Daisuke Kumaki, Shizuo Tokito
Printed organic thin-film transistors (OTFTs) are well suited for low-cost electronic applications, such as radio frequency identification (RFID) tags and sensors. Achieving both high carrier mobility and uniform electrical characteristics in printed OTFT devices is essential in these applications. Here, we report on printed high-performance OTFTs and circuits using silver nanoparticle inks for the source/drain electrodes and a blend of dithieno[2,3-d;2',3'-d']benzo[1,2-b;4,5-b']dithiophene (DTBDT-C6) and polystyrene for the organic semiconducting layer...
October 4, 2016: Scientific Reports
Eriko Mishima, Yoko Sato, Kei Nanatani, Naomi Hoshi, Jong-Kook Lee, Nina Schiller, Gunnar von Heijne, Masao Sakaguchi, Nobuyuki Uozumi
Voltage-dependent potassium (Kv) channels control potassium permeability in response to shifts in the membrane potential. Voltage sensing in Kv channels is mediated by the positively charged transmembrane domain S4. The best-characterized Kv channel, KvAP, lacks the distinct hydrophilic region corresponding to the S3-S4 extracellular loop that is found in other potassium channels. Here we evaluated the topogenic properties of the transmembrane regions within the voltage-sensing domain in KvAP. S3 had low membrane insertion activity, whereas S4 possessed a unique type-I signal anchor (SA-I) function, which enabled it to insert into the membrane by itself...
September 30, 2016: Biochemical Journal
Richard F Neville, Samit K Gupta, David J Kuraguntla
OBJECTIVE: Prosthetic grafts used for lower extremity revascularization and dialysis access fail because of hyperplastic stenosis and thrombosis. Graft surveillance is advocated to monitor function; however, graft failure can occur between episodic examinations. An innovative sensor with wireless, microchip technology allows automated surveillance with assessment of graft function using a "cloud"-based algorithm. We performed proof-of-concept experiments with in vitro and in vivo models to assess the feasibility such a real-time graft surveillance system...
September 29, 2016: Journal of Vascular Surgery
Crystal Yang, Preston Hinkle, Justin Menestrina, Ivan V Vlassiouk, Zuzanna S Siwy
Biomimetic nanopores with rectifying properties are relevant components of ionic switches, ionic circuits, and biological sensors. Rectification indicates that currents for voltages of one polarity are higher than currents for voltages of the opposite polarity. Ion current rectification requires the presence of surface charges on the pore walls, achieved either by the attachment of charged groups, or in multi-electrode systems by applying voltage to integrated gate electrodes. Here, we present a simpler concept for introducing surface charges via polarization of a thin layer of Au present at one entrance of a silicon nitride nanopore...
October 3, 2016: Journal of Physical Chemistry Letters
Hao Wu, Zhiwu Wang, Guozheng Yan, Wentian Jin, Shan Lu, Zerun Zhou
This article presents a novel puborectalis muscle artificial anal sphincter system (PM-AASS) with the module of sensory perception for treating severe faecal incontinence (FI). Due to the implantable feature of PM-AASS, this system applied low-power design and the total energy consumption could drop to 48.8 Ah/d. To reduce the injury of intestine and the pressure exerted on intestine, the actuator, including the structure of tings and the robot mechanism, of PM-AASS was presented and the middle ring was optimised...
September 30, 2016: Journal of Medical Engineering & Technology
Helen H Yang, François St-Pierre
UNLABELLED: A longstanding goal in neuroscience is to understand how spatiotemporal patterns of neuronal electrical activity underlie brain function, from sensory representations to decision making. An emerging technology for monitoring electrical dynamics, voltage imaging using genetically encoded voltage indicators (GEVIs), couples the power of genetics with the advantages of light. Here, we review the properties that determine indicator performance and applicability, discussing both recent progress and technical limitations...
September 28, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Bian Tian, Hanyue Liu, Ning Yang, Yulong Zhao, Zhuangde Jiang
In order to meet the requirements of cable fault detection, a new structure of piezoelectric accelerometer was designed and analyzed in detail. The structure was composed of a seismic mass, two sensitive beams, and two added beams. Then, simulations including the maximum stress, natural frequency, and output voltage were carried out. Moreover, comparisons with traditional structures of piezoelectric accelerometer were made. To verify which vibration mode is the dominant one on the acceleration and the space between the mass and glass, mode analysis and deflection analysis were carried out...
2016: Sensors
Carus H Y Lau, Glenn F King, Mehdi Mobli
Voltage-sensor domains (VSDs) are modular transmembrane domains of voltage-gated ion channels that respond to changes in membrane potential by undergoing conformational changes that are coupled to gating of the ion-conducting pore. Most spider-venom peptides function as gating modifiers by binding to the VSDs of voltage-gated channels and trapping them in a closed or open state. To understand the molecular basis underlying this mode of action, we used nuclear magnetic resonance to delineate the atomic details of the interaction between the VSD of the voltage-gated potassium channel KvAP and the spider-venom peptide VSTx1...
September 28, 2016: Scientific Reports
Carmen M Fernández-Posada, Alicia Castro, Jean-Michel Kiat, Florence Porcher, Octavio Peña, Miguel Algueró, Harvey Amorín
There is a growing activity in the search of novel single-phase multiferroics that could finally provide distinctive magnetoelectric responses at room temperature, for they would enable a range of potentially disruptive technologies, making use of the ability of controlling polarization with a magnetic field or magnetism with an electric one (for example, voltage-tunable spintronic devices, uncooled magnetic sensors and the long-searched magnetoelectric memory). A very promising novel material concept could be to make use of phase-change phenomena at structural instabilities of a multiferroic state...
2016: Nature Communications
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"