Read by QxMD icon Read

Autism gene drug

Yasin Panahi, Fahimeh Salasar Moghaddam, Zahra Ghasemi, Mandana Hadi Jafari, Reza Shervin Badv, Mohamad Reza Eskandari, Mehrdad Pedram
Childhood autism is a severe form of complex genetically heterogeneous and behaviorally defined set of neurodevelopmental diseases, collectively termed as autism spectrum disorders (ASD). Reverse transcriptase quantitative real-time PCR (RT-qPCR) is a highly sensitive technique for transcriptome analysis, and it has been frequently used in ASD gene expression studies. However, normalization to stably expressed reference gene(s) is necessary to validate any alteration reported at the mRNA level for target genes...
October 12, 2016: International Journal of Molecular Sciences
Arti B Patel, Irene Tsilioni, Susan E Leeman, Theoharis C Theoharides
We had reported elevated serum levels of the peptide neurotensin (NT) in children with autism spectrum disorders (ASD). Here, we show that NT stimulates primary human microglia, the resident immune cells of the brain, and the immortalized cell line of human microglia-SV40. NT (10 nM) increases the gene expression and release (P < 0.001) of the proinflammatory cytokine IL-1β and chemokine (C-X-C motif) ligand 8 (CXCL8), chemokine (C-C motif) ligand 2 (CCL2), and CCL5 from human microglia. NT also stimulates proliferation (P < 0...
September 23, 2016: Proceedings of the National Academy of Sciences of the United States of America
T L Wise
Fragile X syndrome (FXS) is an inherited form of intellectual disability that is usually caused by expansion of a polymorphic CGG repeat in the 5' untranslated region of the X-linked FMR1 gene, which leads to hypermethylation and transcriptional silencing. Two non-neurological phenotypes of FXS are enlarged testes and connective tissue dysplasia, which could be caused by alterations in a growth factor signaling pathway. FXS patients also frequently have autistic-like symptoms, suggesting that the signaling pathways affected in FXS may overlap with those affected in autism...
September 19, 2016: Genes, Brain, and Behavior
Tingting Wang, Ryan T Jones, Jenna M Whippen, Graeme W Davis
The homeostatic modulation of neurotransmitter release, termed presynaptic homeostatic potentiation (PHP), is a fundamental type of neuromodulation, conserved from Drosophila to humans, that stabilizes information transfer at synaptic connections throughout the nervous system. Here, we demonstrate that α2δ-3, an auxiliary subunit of the presynaptic calcium channel, is required for PHP. The α2δ gene family has been linked to chronic pain, epilepsy, autism, and the action of two psychiatric drugs: gabapentin and pregabalin...
September 13, 2016: Cell Reports
M Jaber
SCIENTIFIC BACKGROUND: Autism spectrum disorders (ASD) are neurodevelopmental disorders associated with disturbances in communication, social interactions, cognition and affect. ASD are also accompanied by complex movement disorders, including ataxia. A special focus of recent research in this area is made on the striatum and the cerebellum, two structures known not only to control movement but also to be involved in cognitive functions such as memory and language. Dysfunction within the motor system may be associated with abnormal movements in ASD that are translated into ataxia, abnormal pattern of righting, gait sequencing, development of walking, and hand positioning...
September 8, 2016: L'Encéphale
Ann Olincy, Audrey Blakeley-Smith, Lynn Johnson, William R Kem, Robert Freedman
Abnormalities in CHRNA7, the alpha7-nicotinic receptor gene, have been reported in autism spectrum disorder. These genetic abnormalities potentially decrease the receptor's expression and diminish its functional role. This double-blind, placebo-controlled crossover study in two adult patients investigated whether an investigational receptor-specific partial agonist drug would increase the inhibitory functions of the gene and thereby increase patients' attention. An electrophysiological biomarker, P50 inhibition, verified the intended neurobiological effect of the agonist, and neuropsychological testing verified a primary cognitive effect...
August 26, 2016: Journal of Autism and Developmental Disorders
Chun-Xue Liu, Xiao-Lan Peng, Chun-Chun Hu, Chun-Yang Li, Qiang Li, Xiu Xu
SHANK3 is a scaffolding protein that binds to various synaptic proteins at the postsynaptic density (PSD) of excitatory glutamatergic synapses. SHANK3 is not only strongly implicated in autism spectrum disorders (ASD) but also plays a critical role in human Phelan-McDermid syndrome (22q13.3 deletion syndrome). Accumulated experimental evidence demonstrates that the zebrafish model system is useful for studying the functions of ASD-related gene during early development. However, many basic features of shank3 transcript expression in zebrafish remain poorly understood...
August 26, 2016: Development Genes and Evolution
Raili Riikonen
There are no treatments for the core symptoms of autistic spectrum disorder (ASD), but there is now more knowledge on emerging mechanisms and on mechanism-based therapies. In autism there are altered synapses: genes affected are commonly related to synaptic and immune function. Dysregulation of activity-dependent signaling networks may have a key role the etiology of autism. There is an over-activation of IGF-AKT-mTor in autism spectrum disorders. Morphological and electro-physiological defects of the cerebellum are linked to system-wide ASD-like behavior defects...
November 2016: European Journal of Paediatric Neurology: EJPN
Robert A Kozol, Alexander J Abrams, David M James, Elena Buglo, Qing Yan, Julia E Dallman
Zebrafish are a unique cell to behavior model for studying the basic biology of human inherited neurological conditions. Conserved vertebrate genetics and optical transparency provide in vivo access to the developing nervous system as well as high-throughput approaches for drug screens. Here we review zebrafish modeling for two broad groups of inherited conditions that each share genetic and molecular pathways and overlap phenotypically: neurodevelopmental disorders such as Autism Spectrum Disorders (ASD), Intellectual Disability (ID) and Schizophrenia (SCZ), and neurodegenerative diseases, such as Cerebellar Ataxia (CATX), Hereditary Spastic Paraplegia (HSP) and Charcot-Marie Tooth Disease (CMT)...
2016: Frontiers in Molecular Neuroscience
Catherine H Choi, Brian P Schoenfeld, Aaron J Bell, Joseph Hinchey, Cory Rosenfelt, Michael J Gertner, Sean R Campbell, Danielle Emerson, Paul Hinchey, Maria Kollaros, Neal J Ferrick, Daniel B Chambers, Steven Langer, Steven Sust, Aatika Malik, Allison M Terlizzi, David A Liebelt, David Ferreiro, Ali Sharma, Eric Koenigsberg, Richard J Choi, Natalia Louneva, Steven E Arnold, Robert E Featherstone, Steven J Siegel, R Suzanne Zukin, Thomas V McDonald, Francois V Bolduc, Thomas A Jongens, Sean M J McBride
Fragile X is the most common monogenic disorder associated with intellectual disability (ID) and autism spectrum disorders (ASD). Additionally, many patients are afflicted with executive dysfunction, ADHD, seizure disorder and sleep disturbances. Fragile X is caused by loss of FMRP expression, which is encoded by the FMR1 gene. Both the fly and mouse models of fragile X are also based on having no functional protein expression of their respective FMR1 homologs. The fly model displays well defined cognitive impairments and structural brain defects and the mouse model, although having subtle behavioral defects, has robust electrophysiological phenotypes and provides a tool to do extensive biochemical analysis of select brain regions...
2016: Frontiers in Behavioral Neuroscience
Huiping Li, Pingping Zhao, Qiong Xu, Shifang Shan, Chunchun Hu, Zilong Qiu, Xiu Xu
The small nuclear ribonucleoprotein polypeptide N (SNRPN) gene, encoding the RNA-associated SmN protein, duplications or deletions of which are strongly associated with neurodevelopmental disabilities. SNRPN-coding protein is highly expressed in the brain. However, the role of SNRPN protein in neural development remains largely unknown. Here we showed that the expression of SNRPN increased markedly during postnatal brain development. Overexpression or knockdown of SNRPN in cortical neurons impaired neurite outgrowth, neuron migration, and the distribution of dendritic spines...
2016: Scientific Reports
Meng Li, Huashan Zhao, Gene E Ananiev, Michael Musser, Kathryn H Ness, Dianne L Maglaque, Krishanu Saha, Anita Bhattacharyya, Xinyu Zhao
Human patient-derived induced pluripotent stem cells (hiPSCs) provide unique opportunities for disease modeling and drug development. However, adapting hiPSCs or their differentiated progenies to high throughput assays for phenotyping or drug screening has been challenging. Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and a major genetic cause of autism. FXS is caused by mutational trinucleotide expansion in the FMR1 gene leading to hypermethylation and gene silencing...
July 16, 2016: Stem Cells
Żanna Pastuszak, Anna Stępień, Renata Piusińska-Macoch, Bogdan Brodacki, Kazimierz Tomczykiewicz
Repetitive transcranial magnetic stimulation (rTMS) is a treatment option with proved effectiveness especially in drug resist depression. It is used in functional brain mapping before neurosurgery operations and diagnostic of corticospinal tract transmission. Many studies are performed to evaluate rTMS using in treatment of obsessive - compulsive disorder, schizophrenia, autism, strokes, tinnitus, Alzheimer and Parkinson diseases, cranial traumas. Moreover rTMS was used in treatment of multiple sclerosis, migraine, dystonia...
June 2016: Polski Merkuriusz Lekarski: Organ Polskiego Towarzystwa Lekarskiego
Peter G Wells, Shama Bhatia, Danielle M Drake, Lutfiya Miller-Pinsler
In utero exposure of mouse progeny to alcohol (ethanol, EtOH) and methamphetamine (METH) causes substantial postnatal neurodevelopmental deficits. One emerging pathogenic mechanism underlying these deficits involves fetal brain production of reactive oxygen species (ROS) that alter signal transduction, and/or oxidatively damage cellular macromolecules like lipids, proteins, and DNA, the latter leading to altered gene expression, likely via non-mutagenic mechanisms. Even physiological levels of fetal ROS production can be pathogenic in biochemically predisposed progeny, and ROS formation can be enhanced by drugs like EtOH and METH, via activation/induction of ROS-producing NADPH oxidases (NOX), drug bioactivation to free radical intermediates by prostaglandin H synthases (PHS), and other mechanisms...
June 2016: Birth Defects Research. Part C, Embryo Today: Reviews
Takuya Kawanai, Yukio Ago, Ryo Watanabe, Aya Inoue, Atsuki Taruta, Yusuke Onaka, Shigeru Hasebe, Hitoshi Hashimoto, Toshio Matsuda, Kazuhiro Takuma
Valproic acid (VPA) is a multi-target drug and an inhibitor of histone deacetylase (HDAC). We have previously demonstrated that prenatal exposure to VPA at embryonic day 12.5 (E12.5), but not at E14.5, causes autism-like behavioral abnormalities in male mouse offspring. We have also found that prenatal VPA exposure causes transient histone hyperacetylation in the embryonic brain, followed by decreased neuronal cell numbers in the prefrontal and somatosensory cortices after birth. In the present study, we examined whether prenatal HDAC inhibition affects neuronal maturation in primary mouse cortical neurons...
June 14, 2016: Neurochemical Research
Christine T Wong, Netta Ussyshkin, Eizaaz Ahmad, Ravneet Rai-Bhogal, Hongyan Li, Dorota A Crawford
Prostaglandin E2 (PGE2 ) is an endogenous lipid molecule that regulates important physiological functions, including calcium signaling, neuronal plasticity, and immune responses. Exogenous factors such as diet, exposure to immunological agents, toxic chemicals, and drugs can influence PGE2 levels in the developing brain and have been associated with autism disorders. This study seeks to determine whether changes in PGE2 level can alter the behavior of undifferentiated and differentiating neuroectodermal (NE-4C) stem cells and whether PGE2 signaling impinges on the Wnt/β-catenin pathways...
August 2016: Journal of Neuroscience Research
Takeo Kubota, Kazuki Mochizuki
Both environmental factors and genetic factors are involved in the pathogenesis of autism spectrum disorders (ASDs). Epigenetics, an essential mechanism for gene regulation based on chemical modifications of DNA and histone proteins, is also involved in congenital ASDs. It was recently demonstrated that environmental factors, such as endocrine disrupting chemicals and mental stress in early life, can change epigenetic status and gene expression, and can cause ASDs. Moreover, environmentally induced epigenetic changes are not erased during gametogenesis and are transmitted to subsequent generations, leading to changes in behavior phenotypes...
2016: International Journal of Environmental Research and Public Health
Kimberly P Keil, Pamela J Lein
There is now compelling evidence that gene by environment interactions are important in the etiology of autism spectrum disorders (ASDs). However, the mechanisms by which environmental factors interact with genetic susceptibilities to confer individual risk for ASD remain a significant knowledge gap in the field. The epigenome, and in particular DNA methylation, is a critical gene expression regulatory mechanism in normal and pathogenic brain development. DNA methylation can be influenced by environmental factors such as diet, hormones, stress, drugs, or exposure to environmental chemicals, suggesting that environmental factors may contribute to adverse neurodevelopmental outcomes of relevance to ASD via effects on DNA methylation in the developing brain...
March 2016: Environmental Epigenetics
Kristopher T Kahle, Arjun R Khanna, JingJing Duan, Kevin J Staley, Eric Delpire, Annapurna Poduri
The cation-Cl(-) cotransporter KCC2, encoded by SLC12A5, is required for the emergence and maintenance of GABAergic fast synaptic inhibition in organisms across evolution. These findings have suggested that KCC2 deficiency might play a role in the pathogenesis human epilepsy, but this has only recently been substantiated by two lines of genetic evidence. The first is the discovery of heterozygous missense polymorphisms in SLC12A5, causing decreased KCC2-dependent Cl(-) extrusion capacity, in an Australian family with inherited febrile seizures and in a French-Canadian cohort with severe genetic generalized epilepsy (GGE)...
April 29, 2016: Neuroscientist: a Review Journal Bringing Neurobiology, Neurology and Psychiatry
Sadeep Medhasi, Ekawat Pasomsub, Natchaya Vanwong, Nattawat Ngamsamut, Apichaya Puangpetch, Montri Chamnanphon, Yaowaluck Hongkaew, Penkhae Limsila, Darawan Pinthong, Chonlaphat Sukasem
Single-nucleotide polymorphisms (SNPs) among drug-metabolizing enzymes and transporters (DMETs) influence the pharmacokinetic profile of drugs and exhibit intra- and interethnic variations in drug response in terms of efficacy and safety profile. The main objective of this study was to assess the frequency of allelic variants of drug absorption, distribution, metabolism, and elimination-related genes in Thai children and adolescents with autism spectrum disorder. Blood samples were drawn from 119 patients, and DNA was extracted...
2016: Neuropsychiatric Disease and Treatment
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"