keyword
MENU ▼
Read by QxMD icon Read
search

exoskeleton

keyword
https://www.readbyqxmd.com/read/28817701/effect-of-exoskeletal-joint-constraint-and-passive-resistance-on-metabolic-energy-expenditure-implications-for-walking-in-paraplegia
#1
Sarah R Chang, Rudi Kobetic, Ronald J Triolo
An important consideration in the design of a practical system to restore walking in individuals with spinal cord injury is to minimize metabolic energy demand on the user. In this study, the effects of exoskeletal constraints on metabolic energy expenditure were evaluated in able-bodied volunteers to gain insight into the demands of walking with a hybrid neuroprosthesis after paralysis. The exoskeleton had a hydraulic mechanism to reciprocally couple hip flexion and extension, unlocked hydraulic stance controlled knee mechanisms, and ankles fixed at neutral by ankle-foot orthoses...
2017: PloS One
https://www.readbyqxmd.com/read/28814061/modular-one-to-many-clutchable-actuator-for-a-soft-elbow-exosuit
#2
M Canesi, M Xiloyannis, A Ajoudani, A Biechi, L Masia
Exoskeletons have been developed for a wide range of applications, from the military to the medical field, with the aim of augmenting human performance or compensating for neuromuscular deficiencies. However, to empower the high number of degrees of freedom of the human body, they often employ a high number of motors, increasing the size, weight and power consumption of the system. We hereby present an actuation strategy to empower our elbow exosuit that adopts a single motor to drive multiple, independently actuated, degrees of freedom...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814059/biomot-exoskeleton-towards-a-smart-wearable-robot-for-symbiotic-human-robot-interaction
#3
Tomislav Bacek, Marta Moltedo, Kevin Langlois, Guillermo Asin Prieto, Maria Carmen Sanchez-Villamanan, Jose Gonzalez-Vargas, Bram Vanderborght, Dirk Lefeber, Juan C Moreno
This paper presents design of a novel modular lower-limb gait exoskeleton built within the FP7 BioMot project. Exoskeleton employs a variable stiffness actuator in all 6 joints, a directional-flexibility structure and a novel physical humanrobot interfacing, which allows it to deliver the required output while minimally constraining user's gait by providing passive degrees of freedom. Due to modularity, the exoskeleton can be used as a full lower-limb orthosis, a single-joint orthosis in any of the three joints, and a two-joint orthosis in a combination of any of the two joints...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814056/design-of-a-lightweight-tethered-torque-controlled-knee-exoskeleton
#4
Kirby Ann Witte, Andreas M Fatschel, Steven H Collins
Lower-limb exoskeletons show promise for improving gait rehabilitation for those with chronic gait abnormalities due to injury, stroke or other illness. We designed and built a tethered knee exoskeleton with a strong lightweight frame and comfortable, four-point contact with the leg. The device is structurally compliant in select directions, instrumented to measure joint angle and applied torque, and is lightweight (0.76 kg). The exoskeleton is actuated by two off-board motors. Closed loop torque control is achieved using classical proportional feedback control with damping injection in conjunction with iterative learning...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814055/twiice-a-lightweight-lower-limb-exoskeleton-for-complete-paraplegics
#5
Tristan Vouga, Romain Baud, Jemina Fasola, Mohamed Bouri, Hannes Bleuler
This paper introduces TWIICE, a lower-limb exoskeleton that enables people suffering from complete paraplegia to stand up and walk again. TWIICE provides complete mobilization of the lower-limbs, which is a first step toward enabling the user to regain independence in activities of the daily living. The tasks it can perform include level and inclined walking (up to 20° slope), stairs ascent and descent, sitting on a seat, and standing up. Participation in the world's first Cybathlon (Zurich, 2016) demonstrated good performance at these demanding tasks...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814051/design-of-a-wearable-hand-exoskeleton-for-exercising-flexion-extension-of-the-fingers
#6
Inseong Jo, Jeongsoo Lee, Yeongyu Park, Joonbum Bae
In this paper, design of a wearable hand exoskeleton system for exercising flexion/extension of the fingers, is proposed. The exoskeleton was designed with a simple and wearable structure to aid finger motions in 1 degree of freedom (DOF). A hand grasping experiment by fully-abled people was performed to investigate general hand flexion/extension motions and the polynomial curve of general hand motions was obtained. To customize the hand exoskeleton for the user, the polynomial curve was adjusted to the joint range of motion (ROM) of the user and the optimal design of the exoskeleton structure was obtained using the optimization algorithm...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814048/a-mechanism-for-elbow-exoskeleton-for-customised-training
#7
Soumya K Manna, Venketesh N Dubey
It is well proven that repetitive extensive training consisting of active and passive therapy is effective for patients suffering from neuromuscular deficits. The level of difficulty in rehabilitation should be increased with time to improve the neurological muscle functions. A portable elbow exoskeleton has been designed that will meet these requirements and potentially offers superior outcomes than human-assisted training. The proposed exoskeleton can provide both active and passive rehabilitation in a single structure without changing its configuration...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814044/a-survey-of-stakeholder-perspectives-on-a-proposed-combined-exoskeleton-wheelchair-technology
#8
Tim Bhatnagar, W Ben Mortensen, Johanne Mattie, Jamie Wolff, Claire Parker, Jaimie Borisoff
BACKGROUND: Exoskeleton technology has potential benefits for wheelchair users' health and mobility. However, there are practical barriers to their everyday use as a mobility device. In particular, challenges related to travelling longer distances and transitioning between using a wheelchair and exoskeleton walking may present significant deterrents to regular exoskeleton use. In an effort to remove these barriers, a combined exoskeleton-wheelchair concept ('COMBO') has been proposed, which aims to achieve the benefits of both these mobility technologies...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814038/design-and-preliminary-assessment-of-vanderbilt-hand-exoskeleton
#9
Benjamin W Gasser, Daniel A Bennett, Christina M Durrough, Michael Goldfarb
This paper presents the design of a hand exoskeleton intended to enable or facilitate bimanual activities of daily living (ADLs) for individuals with chronic upper extremity hemiparesis resulting from stroke. The paper describes design of the battery-powered, self-contained exoskeleton and presents the results of initial testing with a single subject with hemiparesis from stroke. Specifically, an experiment was conducted requiring the subject to repeatedly remove the lid from a water bottle both with and without the hand exoskeleton...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814032/studying-the-implementation-of-iterative-impedance-control-for-assistive-hand-rehabilitation-using-an-exoskeleton
#10
T Martineau, R Vaidyanathan
A positive training synergy can be obtained when two individuals attempt to learn the same motor task while mechanically coupled to one another. In this paper, we have studied how mimicking this interaction through impedance control can be exploited to improve assistance delivered by hand exoskeleton devices during rehabilitation. In this context, the machine and user take complementary roles akin to two coupled individuals. We present the derivation of a dynamic model of the human hand for the purpose of controller development for new hand exoskeleton platforms...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814030/quantitative-evaluation-of-hand-functions-using-a-wearable-hand-exoskeleton-system
#11
Suin Kim, Jeongsoo Lee, Wookeun Park, Joonbum Bae
To investigate, improve, and observe the effect of rehabilitation therapy, many studies have been conducted on evaluating the motor function quantitatively by developing various types of robotic systems. Even though the robotic systems have been developed, functional evaluation of the hand has been rarely investigated, because it is difficult to install a number of actuators or sensors to the hand due to limited space around the fingers. Therefore, in this study, a hand exoskeleton was developed to satisfy the required specifications for evaluating the hand functions including spasticity of finger flexors, finger independence, and multi-digit synergy and algorithms to evaluate such functions were proposed...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814029/vibrotactile-feedback-to-control-the-amount-of-weight-shift-during-walking-a-first-step-towards-better-control-of-an-exoskeleton-for-spinal-cord-injury-subjects
#12
Heidi J B Muijzer-Witteveen, Sara Nataletti, Martina Agnello, Maura Casadio, Edwin H F van Asseldonk
People with Spinal Cord Injury do not only lack the ability to control their muscles, but also miss the sensory information from below the level of their lesion. Therefore, it may become difficult for them to perceive the state of the body during walking, which is however often used to control wearable exoskeletons. In the present study the possibilities of providing vibrotactile feedback about the Center of Mass (CoM) during walking were investigated. The results showed that healthy subjects could successfully interpret the provided vibrotactile cues and change their walking pattern accordingly...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814022/estimating-anatomical-wrist-joint-motion-with-a-robotic-exoskeleton
#13
Chad G Rose, Claudia K Kann, Ashish D Deshpande, Marcia K O'Malley
Robotic exoskeletons can provide the high intensity, long duration targeted therapeutic interventions required for regaining motor function lost as a result of neurological injury. Quantitative measurements by exoskeletons have been proposed as measures of rehabilitative outcomes. Exoskeletons, in contrast to end effector designs, have the potential to provide a direct mapping between human and robot joints. This mapping rests on the assumption that anatomical axes and robot axes are aligned well, and that movement within the exoskeleton is negligible...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814021/simultaneous-estimation-of-human-and-exoskeleton-motion-a-simplified-protocol
#14
M T Alvarez, D Torricelli, A J Del-Ama, D Pinto, J Gonzalez-Vargas, J C Moreno, A Gil-Agudo, J L Pons
Adequate benchmarking procedures in the area of wearable robots is gaining importance in order to compare different devices on a quantitative basis, improve them and support the standardization and regulation procedures. Performance assessment usually focuses on the execution of locomotion tasks, and is mostly based on kinematic-related measures. Typical drawbacks of marker-based motion capture systems, gold standard for measure of human limb motion, become challenging when measuring limb kinematics, due to the concomitant presence of the robot...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814019/stiffness-control-of-a-nylon-twisted-coiled-actuator-for-use-in-mechatronic-rehabilitation-devices
#15
Brandon P R Edmonds, Ana Luisa Trejos
Mechatronic rehabilitation devices, especially wearables, have been researched extensively and proven to be promising additions to physical therapy, but most designs utilize traditional actuators providing unnatural, robot-like movements. Therefore, many researchers have focused on the development of actuators that mimic biological properties to provide patients with improved results, safety, and comfort. Recently, a twisted-coiled actuator (TCA) made from nylon thread has been found to possess many of these important properties when heated, such as variable stiffness, flexibility, and high power density...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814014/bio-inspired-control-of-joint-torque-and-knee-stiffness-in-a-robotic-lower-limb-exoskeleton-using-a-central-pattern-generator
#16
Stefan O Sobrade, Yannik Nager, Amy R Wu, Roger Gassert, Auke Ijspeert
Robotic lower limb exoskeletons are becoming increasingly popular in therapy and recreational use. However, most exoskeletons are still rather limited in their locomotion speed and the activities of daily live they can perform. Furthermore, they typically do not allow for a dynamic adaptation to the environment, as they are often controlled with predefined reference trajectories. Inspired by human leg stiffness modulation during walking, variable stiffness actuators increase flexibility without the need for more complex controllers...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814012/quantitative-measures-with-wrex-usage
#17
Tracy M Shank, Jinyong Wee, Jennifer Ty, Tariq Rahman
This paper presents the results of two surveys conducted with users of a functional upper extremity orthosis called the Wilmington Robotic EXoskeleton (WREX). The WREX is a passive anti-gravity arm orthosis that allows people with neuromuscular disabilities to move their arms in three dimensions. An online user survey with 55 patients was conducted to determine the benefits of the WREX. The survey asked 10 questions related to upper extremity function with and without the WREX as well as subjective impressions of the device...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814011/adaptive-control-of-an-exoskeleton-robot-with-uncertainties-on-kinematics-and-dynamics
#18
Brahim Brahmi, Maarouf Saad, Cristobal Ochoa-Luna, Mohammad H Rahman
In this paper, we propose a new adaptive control technique based on nonlinear sliding mode control (JSTDE) taking into account kinematics and dynamics uncertainties. This approach is applied to an exoskeleton robot with uncertain kinematics and dynamics. The adaptation design is based on Time Delay Estimation (TDE). The proposed strategy does not necessitate the well-defined dynamic and kinematic models of the system robot. The updated laws are designed using Lyapunov-function to solve the adaptation problem systematically, proving the close loop stability and ensuring the convergence asymptotically of the outputs tracking errors...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814008/self-aligning-exoskeleton-hip-joint-kinematic-design-with-five-revolute-three-prismatic-and-one-ball-joint
#19
Jonas Beil, Charlotte Marquardt, Tamim Asfour
Kinematic compatibility is of paramount importance in wearable robotic and exoskeleton design. Misalignments between exoskeletons and anatomical joints of the human body result in interaction forces which make wearing the exoskeleton uncomfortable and even dangerous for the human. In this paper we present a kinematically compatible design of an exoskeleton hip to reduce kinematic incompatibilities, so called macro- and micro-misalignments, between the human's and exoskeleton's joint axes, which are caused by inter-subject variability and articulation...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814003/a-springs-actuated-finger-exoskeleton-from-mechanical-design-to-spring-variables-evaluation
#20
Roberto Bortoletto, Ashley N Mello, Davide Piovesan
In the context of post-stroke patients, suffering of hemiparesis of the hand, robot-aided neuro-motor rehabilitation allows for intensive rehabilitation treatments and quantitative evaluation of patients' progresses. This work presents the design and evaluation of a spring actuated finger exoskeleton. In particular, the spring variables and the interaction forces between the assembly and the hand were investigated, in order to assess the effectiveness of the proposed exoskeleton.
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
keyword
keyword
49875
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"