Read by QxMD icon Read

cell fate determination

Xiaozhao Wang, Zun Chen, Beibei Zhou, Xiyue Duan, Wen-Jian Weng, Kui Cheng, Huiming Wang, Jun Lin
Extracellular matrix (ECM) provides a dynamic and complex environment to determine the fate of stem cells. In this work, in vitro cultured cell sheets were treated with paraformaldehyde or ethanol and eventually become ECM. Such ECM was then immobilized on titanium substrates via polydopamine chemistry. Their effects on bone marrow mesenchymal stromal cells (BMSCs) behaviors were investigated. It was found that paraformaldehyde treated ECM coatings (PT-ECM) showed well-maintained microstructure, whereas that of ethanol treated (ET-ECM) were completely changed...
March 22, 2018: ACS Applied Materials & Interfaces
Syeda Nayab Fatima Abidi, Rachel K Smith-Bolton
The imaginal discs of the genetically tractable model organism Drosophila melanogaster have been used to study cell-fate specification and plasticity, including homeotic changes and regeneration-induced transdetermination. The identity of the reprogramming mechanisms that induce plasticity has been of great interest in the field. Here we identify a change from antennal fate to eye fate induced by a Distal-less-GAL4 (DllGAL4) P-element insertion that is a mutant allele of Dll and expresses GAL4 in the antennal imaginal disc...
March 21, 2018: Scientific Reports
Kathryn E Pendleton, Sung Kyun Park, Olga V Hunter, Stefan M Bresson, Nicholas K Conrad
Transcriptome analysis of human cells has revealed that intron retention controls the expression of a large number of genes with diverse cellular functions. Detained introns (DI) constitute a subgroup of transcripts with retained introns that are not exported to the cytoplasm but instead remain in the nucleus. Previous studies reported that the splicing of DIs in the CLK1 transcript are posttranscriptionally induced to produce mature mRNA in the absence of new transcription. Thus, CLK1-DI serves as a precursor or "reservoir" for the CLK1 mRNA...
March 21, 2018: RNA
Igor Pottosin, Isaac Zepeda-Jazo, Jayakumar Bose, Sergey Shabala
Oxidative stress signaling is essential for plant adaptation to hostile environments. Previous studies revealed the essentiality of hydroxyl radicals (HO•)-induced activation of massive K⁺ efflux and a smaller Ca2+ influx as an important component of plant adaptation to a broad range of abiotic stresses. Such activation would modify membrane potential making it more negative. Contrary to these expectations, here, we provide experimental evidence that HO• induces a strong depolarization, from -130 to -70 mV, which could only be explained by a substantial HO•-induced efflux of intracellular anions...
March 18, 2018: International Journal of Molecular Sciences
Joana Torres, Remo Monti, Ariane L Moore, Makiko Seimiya, Yanrui Jiang, Niko Beerenwinkel, Christian Beisel, Jorge V Beira, Renato Paro
Tumor initiation is often linked to a loss of cellular identity. Transcriptional programs determining cellular identity are preserved by epigenetically-acting chromatin factors. Although such regulators are among the most frequently mutated genes in cancer, it is not well understood how an abnormal epigenetic condition contributes to tumor onset. In this work, we investigated the gene signature of tumors caused by disruption of the Drosophila epigenetic regulator, polyhomeotic (ph). In larval tissue ph mutant cells show a shift towards an embryonic-like signature...
March 21, 2018: ELife
Julián Esteban Sáez, Cristian Arredondo, Carlos Rivera, María Estela Andrés
CoREST family of transcriptional corepressors regulates gene expression and cell fate determination during development. CoREST corepressors recruit with different affinity the histone demethylase LSD1 (KDM1A) and the deacetylases HDAC1/2 to repress with variable strength the expression of target genes. CoREST protein levels are differentially regulated during cell fate decisions and in mature tissues. However, regulatory mechanisms of CoREST corepressors at the protein level have not been studied. Here, we report that CoREST (CoREST1, RCOR1) and its homologs CoREST2 (RCOR2) and CoREST3 (RCOR3) interact with PIASγ, a SUMO-E3 ligase...
March 19, 2018: Biochemical Journal
Peng Wei, Katja K Dove, Claire Bensard, John C Schell, Jared Rutter
Compared to their differentiated progeny, stem cells are often characterized by distinct metabolic landscapes that emphasize anaerobic glycolysis and a lower fraction of mitochondrial carbohydrate oxidation. Until recently, the metabolic program of stem cells had been thought to be a byproduct of the environment, rather than an intrinsic feature determined by the cell itself. However, new studies highlight the impact of metabolic behavior on the maintenance and function of intestinal stem cells and hair follicle stem cells...
March 16, 2018: Trends in Cell Biology
Roland Thuenauer, Simon Nicklaus, Marco Frensch, Kevin Troendle, Josef Madl, Winfried Römer
A key factor determining the fate of individual cells within an epithelium is the unique microenvironment that surrounds each cell. It regulates location-dependent differentiation into specific cellular sub-types, but, on the other hand, a disturbed microenvironment can promote malignant transformation of epithelial cells leading to cancer formation. Here, we present a tool based on a microfluidic biochip that enables novel research approaches by providing a means to control the basolateral microenvironment of a confined number of neighbouring cells within an epithelial monolayer...
February 19, 2018: RSC Advances
Qingqing Wei, Ruiqi Li, Liang Zhong, Haiyuan Mu, Shaopeng Zhang, Liang Yue, Jinzhu Xiang, Enhong Li, Minglei Zhi, Suying Cao, Jianyong Han
After zygotic genome activation and lineage specification, zygotes develop into late blastocysts comprising three distinct cell types. The molecular mechanisms underlying this progress are largely unknown in pigs. Here, we intended to analyze an extensive set of regulators at the single-cell level to define the events involved in the development of the porcine blastocysts. Using a quantitative microfluidics approach in single cells, we detected mRNA levels of 96 genes known to function in early embryonic development and maintenance of stem cell pluripotency simultaneously in 480 individual cells derived from porcine preimplantation embryos...
March 13, 2018: Biology of Reproduction
Muhammad Mosaraf Hossain, David Barua, Vahid Arabkari, Nahidul Islam, Ananya Gupta, Sanjeev Gupta
Nuclear receptor coactivators (NCOAs) function as coactivators for nuclear receptors as well as several other transcription factors and potentiate their transcriptional activity. NCOAs play an important role in biology of hormone-dependent and -independent cancers. MCB-613 is a recently described, small molecule stimulator of NCOAs and anti-neoplastic compound that leads to the death of tumour cells due to increased cellular stress. In the present study we investigated the molecular mechanism of MCB-613-induced cell death...
February 20, 2018: Oncotarget
Daniel J Dennis, Sisu Han, Carol Schuurmans
The formation of functional neural circuits in the vertebrate central nervous system (CNS) requires that appropriate numbers of the correct types of neuronal and glial cells are generated in their proper places and times during development. In the embryonic CNS, multipotent progenitor cells first acquire regional identities, and then undergo precisely choreographed temporal identity transitions (i.e. time-dependent changes in their identity) that determine how many neuronal and glial cells of each type they will generate...
March 12, 2018: Brain Research
Congyu Wu, Yajing Shen, Mengwei Chen, Kun Wang, Yongyong Li, Yu Cheng
Remote control of cells and the regulation of cell events at the molecular level are of great interest in the biomedical field. In addition to chemical compounds and genes, mechanical forces play a pivotal role in regulating cell fate, which have prompted the rapid growth of mechanobiology. From a perspective of nanotechnology, magnetic nanomaterials (MNs) are an appealing option for mechanotransduction due to their capabilities in spatiotemporal manipulation of mechanical forces via the magnetic field. As a newly developed paradigm, magneto-mechanotransduction is harnessed to physically regulate cell fate for biomedical applications...
March 15, 2018: Advanced Materials
Maria E Piroli, Ehsan Jabbarzadeh
Human stem cells hold significant potential for the treatment of various diseases. However, their use as a therapy is hampered because of limited understanding of the mechanisms by which they respond to environmental stimuli. Efforts to understand extracellular biophysical cues have demonstrated the critical roles of geometrical and mechanical signals in determining the fate of stem cells. The goal of this study was to explore the interplay between cell polarity and matrix stiffness in stem cell lineage specification...
March 14, 2018: Annals of Biomedical Engineering
Hong Duan, Luis F de Navas, Fuqu Hu, Kailiang Sun, Yannis E Mavromatakis, Kayla Viets, Cyrus Zhou, Joshua Kavaler, Robert J Johnston, Andrew Tomlinson, Eric C Lai
Photoreceptors in the crystalline Drosophila eye are recruited by receptor tyrosine kinase (RTK)/Ras signaling, mediated by the Epidermal Growth Factor receptor (EGFR) and Sevenless receptor. Analyses of an allelic deletion series of the mir-279/996 locus, along with a panel of modified genomic rescue transgenes, show that normal Drosophila eye patterning depends on both miRNAs. Transcriptional reporter and activity sensor transgenes reveal expression and function of miR-279/996 in non-neural cells of the developing eye...
March 14, 2018: Development
Akiko Iizuka-Kogo
The organ of Corti, an acoustic sensory organ, is a specifically differentiated epithelium of the cochlear duct, which is a part of the membranous labyrinth in the inner ear. Cells in the organ of Corti are generally classified into two kinds; hair cells, which transduce the mechanical stimuli of sound to the cell membrane electrical potential differences, and supporting cells. These cells emerge from homogeneous prosensory epithelium through cell fate determination and differentiation. In the organ of Corti organogenesis, cell differentiation and the rearrangement of their position proceed in parallel, resulting in a characteristic alignment of mature hair cells and supporting cells...
March 13, 2018: Medical Molecular Morphology
Di Ding, Lin-Lin Chen, Ying-Zhen Zhai, Chen-Jian Hou, Li-Li Tao, Shu-Han Lu, Jian Wu, Xiu-Ping Liu
Reversal of activated hepatic stellate cells (HSCs) to a quiescent state and apoptosis of activated HSCs are key elements in the reversion of hepatic fibrosis. CCAAT/enhancer binding protein α (C/EBP-α) has been shown to inhibit HSC activation and promote its apoptosis. This study aims to investigate how C/EBP-α acetylation affects the fate of activated HSCs. Effects of a histone deacetylation inhibitor trichostatin A (TSA) on HSC activation were evaluated in a mouse model of liver fibrosis caused by carbon tetrachloride (CCl4 ) intoxication...
March 13, 2018: Scientific Reports
Arun Kumar, Priyanka Sharma, Mercè Gomar-Alba, Zhanna Shcheprova, Anne Daulny, Trinidad Sanmartín, Irene Matucci, Charlotta Funaya, Miguel Beato, Manuel Mendoza
The acquisition of cellular identity is coupled to changes in the nuclear periphery and nuclear pore complexes (NPCs). Whether and how these changes determine cell fate remain unclear. We have uncovered a mechanism that regulates NPC acetylation to direct cell fate after asymmetric division in budding yeast. The lysine deacetylase Hos3 associates specifically with daughter cell NPCs during mitosis to delay cell cycle entry (Start). Hos3-dependent deacetylation of nuclear basket and central channel nucleoporins establishes daughter-cell-specific nuclear accumulation of the transcriptional repressor Whi5 during anaphase and perinuclear silencing of the G1/S cyclin gene CLN2 in the following G1 phase...
March 12, 2018: Nature Cell Biology
Jinjin Zhu, Alison Ordway, Lena Weber, Kasun Buddika, Justin P Kumar
How different cells and tissues commit and determine their fates has been a central question in developmental biology since the seminal embryological experiments conducted by Wilhelm Roux and Hans Driesch in sea urchins and frogs. Here, we demonstrate that Polycomb group (PcG) proteins maintain Drosophila eye specification by suppressing the activation of alternative fate choices. The loss of PcG in the developing eye results in a cellular reprogramming event in which the eye is redirected to a wing fate. This fate transformation occurs with either the individual loss of Pc or the simultaneous reduction of PhoRC and Pax6...
March 12, 2018: Development
Man K S Lee, Annas Al-Sharea, Dragana Dragoljevic, Andrew J Murphy
PURPOSE OF REVIEW: Hematopoietic stem cells (HSCs) reside in the bone marrow and are important in replenishing all cells in the blood through a process termed hematopoiesis. One of the defining characteristics of HSCs is that they must be able to balance their self-renewal capacity with their differentiation into committed blood cells in various blood lineages. For these events to occur, HSCs must be tightly regulated in the bone marrow by intrinsic and extrinsic factors to maintain steady hematopoiesis...
March 9, 2018: Current Opinion in Lipidology
Yohei Mikami, Gianluca Scarno, Beatrice Zitti, Han-Yu Shih, Yuka Kanno, Angela Santoni, John J O'Shea, Giuseppe Sciumè
Innate lymphoid cells (ILCs) producing IL-22 and/or IL-17, designated as ILC3, comprise a heterogeneous subset of cells involved in regulation of gut barrier homeostasis and inflammation. Exogenous environmental cues in conjunction with regulated expression of endogenous factors are key determinants of plasticity of ILC3 towards the type 1 fate. Herein, by using mouse models and transcriptomic approaches, we defined at the molecular level, initial events driving ILC3 expressing natural cytotoxicity receptors (NCR+ ILC3) to acquire type 1 features...
March 9, 2018: European Journal of Immunology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"