Read by QxMD icon Read

micro electrode array

Marijn Bart Martens, Monica Frega, Jessica Classen, Lisa Epping, Elske Bijvank, Marco Benevento, Hans van Bokhoven, Paul Tiesinga, Dirk Schubert, Nael Nadif Kasri
Heterozygous mutations or deletions in the human Euchromatin histone methyltransferase 1 (EHMT1) gene cause Kleefstra syndrome, a neurodevelopmental disorder that is characterized by autistic-like features and severe intellectual disability (ID). Neurodevelopmental disorders including ID and autism may be related to deficits in activity-dependent wiring of brain circuits during development. Although Kleefstra syndrome has been associated with dendritic and synaptic defects in mice and Drosophila, little is known about the role of EHMT1 in the development of cortical neuronal networks...
October 21, 2016: Scientific Reports
Bhaskar Dudem, Yeong Hwan Ko, Jung Woo Leem, Joo Ho Lim, Jae Su Yu
We report the hierarchical nano/micro architectured (HNMA)-polydimethylsiloxane (PDMS) film-based hybrid energy cells with multi-functionality to simultaneously harvest mechanical, solar, and wind energies. These films consist of nano/micro dual-scale architectures (i.e., nanonipples on inverted micro pyramidal arrays) on the PDMS surface. The HNMA-PDMS is replicable by a facile and cost-effective soft imprint lithography (SIL) using a nanoporous anodic alumina oxide (AAO) film formed on the micro-pyramidal (MP) structured silicon substrate...
October 19, 2016: ACS Applied Materials & Interfaces
Juul Verberne, Frank Risis, Luke Campbell, Scott Chambers, Stephen O'Leary
HYPOTHESIS: Scala tympani morphology influences the insertion dynamics and intra-scalar position of straight electrode arrays. BACKGROUND: Hearing preservation is the goal of cochlear implantation with current thin straight electrode arrays. These hug the lateral wall, facilitating full, atraumatic insertions. However, most studies still report some postoperative hearing loss. This study explores the influence of scala tympani morphology on array position relative to the basilar membrane and its possible contribution to postoperative hearing loss...
October 12, 2016: Otology & Neurotology
Junshan Liu, Licheng He, Liang Wang, Yuncheng Man, Luyi Huang, Zheng Xu, Dan Ge, Jingmin Li, Chong Liu, Liding Wang
Polymer metallization is extensively used in a variety of micro and nano system technologies. However, the deposited metal film exhibits poor adhesion to polymer substrates, which may cause difficulties in many applications. In this work, ultraviolet (UV)-ozone surface modification is for the first time put forward to enhance the adhesion between metal films and polymer substrates. The adhesion of sputtered Cu films on UV-ozone modified polymethylmethacrylate (PMMA) substrates is enhanced by a factor of 6, and that of Au films is improved by a factor of 10...
October 17, 2016: ACS Applied Materials & Interfaces
Pierre Wijdenes, Hasan Ali, Ryden Armstrong, Wali Zaidi, Colin Dalton, Naweed I Syed
Our inability to accurately monitor individual neurons and their synaptic activity precludes fundamental understanding of brain function under normal and various pathological conditions. However, recent breakthroughs in micro- and nano-scale fabrication processes have advanced the development of neuro-electronic hybrid technology. Among such devices are three-dimensional and planar electrodes, offering the advantages of either high fidelity or longer-term recordings respectively. Here, we present the next generation of planar microelectrode arrays with "nano-edges" that enable long-term (≥1 month) and high fidelity recordings at a resolution 15 times higher than traditional planar electrodes...
October 12, 2016: Scientific Reports
Milou M L Dingemans, Marijke G Schütte, Daphne M M Wiersma, Aart de Groot, Regina G D M van Kleef, Fiona M J Wijnolts, Remco H S Westerink
There is an increasing demand for in vitro test systems to detect neurotoxicity for use in chemical risk assessment. In this study, we evaluated the applicability of rat primary cortical cultures grown on multi-well micro-electrode arrays (mwMEAs) to detect effects of chronic 14-day exposure to structurally different insecticides or methylmercury on neuronal activity (mean spike rate; MSR). Effects of chronic exposure to α-cypermethrin, endosulfan, carbaryl, chlorpyrifos(-oxon), methylmercury or solvent control [14days exposure, initiated after baseline recording at day in vitro (DIV)7] were studied in five successive recordings between DIV10 and DIV21...
October 5, 2016: Neurotoxicology
Irene Rembado, Elisa Castagnola, Luca Turella, Tamara Ius, Riccardo Budai, Alberto Ansaldo, Gian Nicola Angotzi, Francesco Debertoldi, Davide Ricci, Miran Skrap, Luciano Fadiga
High-density surface microelectrodes for electrocorticography (ECoG) have become more common in recent years for recording electrical signals from the cortex. With an acceptable invasiveness/signal fidelity trade-off and high spatial resolution, micro-ECoG is a promising tool to resolve fine task-related spatial-temporal dynamics. However, volume conduction - not a negligible phenomenon - is likely to frustrate efforts to obtain reliable and resolved signals from a sub-millimeter electrode array. To address this issue, we performed an independent component analysis (ICA) on micro-ECoG recordings of somatosensory-evoked potentials (SEPs) elicited by median nerve stimulation in three human patients undergoing brain surgery for tumor resection...
August 18, 2016: International Journal of Neural Systems
Tabassum A Kennedy, Nathan Connell, Timothy Szczykutowicz, Sebastian Schafer, Kevin Royalty, Sara Nace, Brian Gartrell, Samuel Gubbels
HYPOTHESIS: Flat-panel computed tomography (FPCT) will allow more accurate localization of cochlear implants with decreased metallic artifact and decreased radiation dose when compared with multi-detector CT (MDCT). BACKGROUND: The measurement of scalar location and intra-scalar position of cochlear implantation (CI) electrodes using computed tomography (CT) is complicated by metallic image artifact and insufficient scalar resolution. FPCT has been shown to improve upon the resolution of MDCT while reducing artifact...
September 23, 2016: Otology & Neurotology
A G Rouse, J J Williams, J J Wheeler, D W Moran
OBJECTIVE: Electrocorticography (ECoG) has been used for a range of applications including electrophysiological mapping, epilepsy monitoring, and more recently as a recording modality for brain-computer interfaces (BCIs). Studies that examine ECoG electrodes designed and implanted chronically solely for BCI applications remain limited. The present study explored how two key factors influence chronic, closed-loop ECoG BCI: (i) the effect of inter-electrode distance on BCI performance and (ii) the differences in neural adaptation and performance when fixed versus adaptive BCI decoding weights are used...
September 21, 2016: Journal of Neural Engineering
Bernhard Wolfrum, Enno Kätelhön, Alexey Yakushenko, Kay J Krause, Nouran Adly, Martin Hüske, Philipp Rinklin
Micro- and nanofabriation technologies have a tremendous potential for the development of powerful sensor array platforms for electrochemical detection. The ability to integrate electrochemical sensor arrays with microfluidic devices nowadays provides possibilities for advanced lab-on-a-chip technology for the detection or quantification of multiple targets in a high-throughput approach. In particular, this is interesting for applications outside of analytical laboratories, such as point-of-care (POC) or on-site water screening where cost, measurement time, and the size of individual sensor devices are important factors to be considered...
September 20, 2016: Accounts of Chemical Research
John W Sessions, David G Armstrong, Sandra Hope, Brian D Jensen
Traditional methods for addressing chronic wounds focus on correcting dysfunction by controlling extracellular elements. This review highlights technologies that take a different approach - enhancing chronic wound healing by genetic modification to wound beds. Featured cutaneous transduction/transfection methods include viral modalities (i.e. adenoviruses, adeno-associated viruses, retroviruses, and lentiviruses) and conventional non-viral modalities (i.e. naked DNA injections, micro-seeding, liposomal reagents, particle bombardment, and electroporation)...
August 30, 2016: Experimental Dermatology
Doyeon Kim, Geumbee Lee, Daeil Kim, Junyeong Yun, Sang-Soo Lee, Jeong Sook Ha
In this study, we report the fabrication of a high performance flexible micro-supercapacitor (MSC) with an organic gel electrolyte containing a redox-active additive, referred to as poly(methyl methacrylate)-propylene carbonate-lithium perchlorate-hydroquinone (PMMA-PC-LiClO4-HQ). Hexagonal MSCs fabricated on thin polyethylene terephthalate (PET) films had interdigitated electrodes made of spray-coated multi-walled carbon nanotubes (MWNTs) on Au. The addition of HQ as a redox-active additive enhanced not only the specific capacitance but also the energy density of the MSCs dramatically, which is approximately 35 times higher than that of MSCs without the HQ additive...
August 25, 2016: Nanoscale
Xiaoliang Guo, Rong Zhu
This paper reports a novel microarray chip for in-situ, real-time and selective electroporation on individual cells integrated with cell positioning and impedance monitoring. An array of quadrupole-electrode units (termed positioning electrodes) and pairs of planar center electrodes located at the centers of each quadrupole-electrode unit were fabricated on the chip. The positioning electrodes are used to trap and position living cells onto the center electrodes based on negative dielectrophoresis (nDEP). The center electrodes are used for in-situ cell electroporation, and also used to measure cell impedance for monitoring cellular dynamics in real time...
2016: Scientific Reports
Ilaria Colombi, Federico Tinarelli, Valentina Pasquale, Valter Tucci, Michela Chiappalone
In this paper, we show that neuronal assemblies plated on Micro Electrode Arrays present synchronized, low frequency firing patterns similar to in vivo slow wave oscillations, which are a key parameter of sleep-like state. Although neuronal cultures lack the characteristic high-frequency waves of wakefulness, it is possible to modulate their spontaneous firing pattern through the administration of specific neurotransmitters such as acetylcholine. We thus stimulated the cortical cultures with an agonist of acetylcholine receptor, Carbachol, which caused a desynchronization of the spontaneous firing of the cultures...
2016: Frontiers in Neuroscience
Kyeong-Jun Kim, Jin-Ha Choi, Su-Hyun Pyo, Kwang-Seok Yun, Ji-Young Lee, Jeong-Woo Choi, Byung-Keun Oh
Dopamine (DA) is one kind of neurotransmitter in central nervous system which is indicator of neural disease. For this reason, determination of DA concentration in central nervous system is very important for early diagnosis of neural disease. In this study, we designed micro electrode array and fabricated by MEMS technology. Furthermore, we fabricated 3-D conducting nanostructure on electrode surface for enhanced sensitivity and selectivity due to increased surface area. Compared with macro and normal micro electrode, the 3-D nanostructure modified micro electrode shows better electrical performance...
March 2016: Journal of Nanoscience and Nanotechnology
Yao Fu, Xiao-Long Duan, Ming-Ming Xing, Xi-Xian Luo, Ying-Hui Zhang, Wang Liu
Highly ordered TiO2 nanotube array electrodes were successfully fabricated by a two-step anodization method on Ti sheet substrates in an electrolyte composed of ammonium fluoride, deionized water, and glycol. The tube wall was smooth, and the average internal and external diameters, wall thickness, and tube length achieved were 80 nm, 90 nm, 10 nm, and 9 µm, respectively. X-ray diffraction and field emission scanning electron microscopy results revealed that the TiO2 nanotube arrays presented an amorphous structure...
April 2016: Journal of Nanoscience and Nanotechnology
Frédéric Michon, Arno Aarts, Tobias Holzhammer, Patrick Ruther, Gustaaf Borghs, Bruce McNaughton, Fabian Kloosterman
OBJECTIVE: Understanding how neuronal assemblies underlie cognitive function is a fundamental question in system neuroscience. It poses the technical challenge to monitor the activity of populations of neurons, potentially widely separated, in relation to behaviour. In this paper, we present a new system which aims at simultaneously recording from a large population of neurons from multiple separated brain regions in freely behaving animals. APPROACH: The concept of the new device is to combine the benefits of two existing electrophysiological techniques, i...
August 2016: Journal of Neural Engineering
Nicholas L Opie, Nicole R van der Nagel, Sam E John, Kirstan Vessey, Gil S Rind, Stephen M Ronayne, Erica L Fletcher, Clive N May, Terence OBrien, Thomas Oxley
OBJECTIVE: Recently, we reported the development of a stent-mounted electrode array (Stentrode™) capable of chronically recording neural signals from within a blood vessel with high fidelity. Preliminary data suggested incorporation of the Stentrode™ into the blood vessel wall was associated with improved recording sensitivity. We now investigate neointimal incorporation of the Stentrode™, implanted in a cohort of sheep for up to 190 days. METHODS: Micro-CT, obtained from the Imaging and Medical Beamline at the Australian Synchrotron, and histomorphometic techniques developed specifically for evaluation of cerebral vasculature implanted with a stent-electrode array were compared as measures to assess device incorporation and vessel patency...
June 21, 2016: IEEE Transactions on Bio-medical Engineering
Lei Ren, Qing Jiang, Keyun Chen, Zhipeng Chen, Chengfeng Pan, Lelun Jiang
A novel micro-needle array electrode (MAE) fabricated by thermal drawing and coated with Ti/Au film was proposed for bio-signals monitoring. A simple and effective setup was employed to form glassy-state poly (lactic-co-glycolic acid) (PLGA) into a micro-needle array (MA) by the thermal drawing method. The MA was composed of 6 × 6 micro-needles with an average height of about 500 μm. Electrode-skin interface impedance (EII) was recorded as the insertion force was applied on the MAE. The insertion process of the MAE was also simulated by the finite element method...
2016: Sensors
Zhiyi Lu, Wenwen Xu, Jun Ma, Yingjie Li, Xiaoming Sun, Lei Jiang
A micro-/nanostructured "superaerophilic" electrode constructed by direct growth of cobalt-incorporated and nitrogen-doped carbon-nanotube arrays with subsequent hydrophobic modification is demonstrated for a high-performance oxygen-reduction-reaction electrode, superior to the Pt/C-air electrode. This high performance is attributed to the simultaneously accelerated gas-diffusion and electron-transport processes induced by the unique structural advantages.
September 2016: Advanced Materials
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"