Read by QxMD icon Read


Kenneth M McCullough, Dennis Choi, Jidong Guo, Kelsey Zimmerman, Jordan Walton, Donald G Rainnie, Kerry J Ressler
Molecular characterization of neuron populations, particularly those controlling threat responses, is essential for understanding the cellular basis of behaviour and identifying pharmacological agents acting selectively on fear-controlling circuitry. Here we demonstrate a comprehensive workflow for identification of pharmacologically tractable markers of behaviourally characterized cell populations. Thy1-eNpHR-, Thy1-Cre- and Thy1-eYFP-labelled neurons of the BLA consistently act as fear inhibiting or 'Fear-Off' neurons during behaviour...
October 21, 2016: Nature Communications
Linde Boekhoudt, Elisa S Voets, Jacques P Flores-Dourojeanni, Mieneke Cm Luijendijk, Louk Jmj Vanderschuren, Roger Ah Adan
Attentional impairments and exaggerated impulsivity are key features of psychiatric disorders, such as attention-deficit/hyperactivity disorder, schizophrenia, and addiction. These deficits in attentional performance and impulsive behaviours have been associated with aberrant dopamine (DA) signalling, but it remains unknown whether these deficits result from enhanced DA neuronal activity in the midbrain. Here, we took a novel approach by testing the impact of chemogenetically activating DA neurons in the ventral tegmental area (VTA) or substantia nigra pars compacta (SNc) on attention and impulsivity in the five-choice serial reaction time task (5-CSRTT) in rats...
October 17, 2016: Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology
Luigi Bellocchio, Andrea Ruiz-Calvo, Anna Chiarlone, Magali Cabanas, Eva Resel, Jean-René Cazalets, Cristina Blázquez, Yoon H Cho, Ismael Galve-Roperh, Manuel Guzmán
: The dorsal striatum is a major input structure of the basal ganglia and plays a key role in the control of vital processes such as motor behavior, cognition, and motivation. The functionality of striatal neurons is tightly controlled by various metabotropic receptors. Whereas the Gs/Gi-protein-dependent tuning of striatal neurons is fairly well known, the precise impact and underlying mechanism of Gq-protein-dependent signals remain poorly understood. Here, using different experimental approaches, especially designer receptor exclusively activated by designer drug (DREADD) chemogenetic technology, we found that sustained activation of Gq-protein signaling impairs the functionality of striatal neurons and we unveil the precise molecular mechanism underlying this process: a phospholipase C/Ca(2+)/proline-rich tyrosine kinase 2/cJun N-terminal kinase pathway...
October 12, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Keiko Imamura, Naruhiko Sahara, Nicholas M Kanaan, Kayoko Tsukita, Takayuki Kondo, Yumiko Kutoku, Yutaka Ohsawa, Yoshihide Sunada, Koichi Kawakami, Akitsu Hotta, Satoshi Yawata, Dai Watanabe, Masato Hasegawa, John Q Trojanowski, Virginia M-Y Lee, Tetsuya Suhara, Makoto Higuchi, Haruhisa Inoue
Mutations in the gene MAPT encoding tau, a microtubules-associated protein, cause a subtype of familial neurodegenerative disorder, known as frontotemporal lobar degeneration tauopathy (FTLD-Tau), which presents with dementia and is characterized by atrophy in the frontal and temporal lobes of the brain. Although induced pluripotent stem cell (iPSC) technology has facilitated the investigation of phenotypes of FTLD-Tau patient neuronal cells in vitro, it remains unclear how FTLD-Tau patient neurons degenerate...
October 10, 2016: Scientific Reports
Linde Boekhoudt, Azar Omrani, Mieneke C M Luijendijk, Inge G Wolterink-Donselaar, Ellen C Wijbrans, Geoffrey van der Plasse, Roger A H Adan
Hyperactivity is a core symptom in various psychiatric disorders, including attention-deficit/hyperactivity disorder, schizophrenia, bipolar disorders, and anorexia nervosa. Although hyperactivity has been linked to dopaminergic signalling, the causal relationship between midbrain dopamine neuronal activity and locomotor hyperactivity remains unknown. In this study, we test whether increased dopamine neuronal activity is sufficient to induce locomotor hyperactivity. To do so, we used designer receptors exclusively activated by designer drugs (DREADD) to chemogenetically enhance neuronal activity in two main midbrain dopamine neuron populations, i...
October 3, 2016: European Neuropsychopharmacology: the Journal of the European College of Neuropsychopharmacology
Sebastian Hormigo, German Vega-Flores, Manuel A Castro-Alamancos
: Engrained avoidance behavior is highly adaptive when it keeps away harmful events and can be highly maladaptive when individuals elude harmless situations in anxiety disorders, but the neural circuits that mediate avoidance are poorly understood. Using DREADDs and optogenetics in mice, we show that the output of the basal ganglia through the substantia nigra pars reticulata (SNr) controls active avoidance. SNr excitation blocks avoidance to a conditioned sensory stimulus while preserving the ability to escape the harmful event...
October 5, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Morris H Baslow, Christopher K Cain, Robert Sears, Donald A Wilson, Alvin Bachman, Scott Gerum, David N Guilfoyle
Brain activation studies in humans have shown the dynamic nature of neuronal N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) based on changes in their MRS signals in response to stimulation. These studies demonstrated that upon visual stimulation there was a focal increase in cerebral blood flow (CBF) and a decrease in NAA or in the total of NAA and NAAG signals in the visual cortex, and that these changes were reversed upon cessation of stimulation. In the present study we have developed an animal model in order to explore the relationships between brain stimulation, neuronal activity, CBF and NAA...
October 3, 2016: NMR in Biomedicine
Heidi C Meyer, David J Bucci
Contemporary models of behavioral regulation maintain that balanced activity between cognitive control areas (prefrontal cortex, PFC) and subcortical reward-related regions (nucleus accumbens, NAC) mediates the selection of appropriate behavioral responses, whereas imbalanced activity (PFC < NAC) results in maladaptive behavior [1-6]. Imbalance can arise from reduced engagement of PFC (via fatigue or stress [7]) or from excessive activity in NAC [8]. Additionally, a concept far less researched is that an imbalance can result from simultaneously low PFC activity and high NAC activity...
September 20, 2016: Current Biology: CB
Isabel F Augur, Andrew R Wyckoff, Gary Aston-Jones, Peter W Kalivas, Jamie Peters
UNLABELLED: The ventromedial prefrontal cortex (vmPFC) has been shown to negatively regulate cocaine-seeking behavior, but the precise conditions by which vmPFC activity can be exploited to reduce cocaine relapse are currently unknown. We used viral-mediated gene transfer of designer receptors (DREADDs) to activate vmPFC neurons and examine the consequences on cocaine seeking in a rat self-administration model of relapse. Activation of vmPFC neurons with the Gq-DREADD reduced reinstatement of cocaine seeking elicited by cocaine-associated cues, but not by cocaine itself...
September 28, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Horst A Obenhaus, Andrei Rozov, Ilaria Bertocchi, Wannan Tang, Joachim Kirsch, Heinrich Betz, Rolf Sprengel
The causal interrogation of neuronal networks involved in specific behaviors requires the spatially and temporally controlled modulation of neuronal activity. For long-term manipulation of neuronal activity, chemogenetic tools provide a reasonable alternative to short-term optogenetic approaches. Here we show that virus mediated gene transfer of the ivermectin (IVM) activated glycine receptor mutant GlyRα1 (AG) can be used for the selective and reversible silencing of specific neuronal networks in mice. In the striatum, dorsal hippocampus, and olfactory bulb, GlyRα1 (AG) promoted IVM dependent effects in representative behavioral assays...
2016: Frontiers in Molecular Neuroscience
Russell N Van Gelder
Using a targeted chemogenetic approach, a new study provides evidence for a unique pathway for neural processing of light information from melanopsin ganglion cells. These results suggest how light can have both alerting and sleep-promoting effects in mice.
September 12, 2016: Current Biology: CB
Robiul Islam, Angelo Keramidas, Li Xu, Nela Durisic, Pankaj Sah, Joseph W Lynch
The ability to control neuronal activation is rapidly advancing our understanding of brain function and is widely viewed as having eventual therapeutic application. Although several highly effective optogenetic, optochemical genetic, and chemogenetic techniques have been developed for this purpose, new approaches may provide better solutions for addressing particular questions and would increase the number of neuronal populations that can be controlled independently. An early chemogenetic neuronal silencing method employed a glutamate receptor Cl(-) channel engineered for activation by 1-3 nM ivermectin...
September 27, 2016: ACS Chemical Neuroscience
C Joseph Burnett, Michael J Krashes
Designer receptors exclusively activated by designer drugs (DREADDs) have proven to be highly effective neuromodulatory tools for the investigation of neural circuits underlying behavioral outputs. They exhibit a number of advantages: they rely on cell-specific manipulations through canonical intracellular signaling pathways, they are easy and cost-effective to implement in a laboratory setting, and they are easily scalable for single-region or full-brain manipulations. On the other hand, DREADDs rely on ligand-G-protein-coupled receptor interactions, leading to coarse temporal dynamics...
September 7, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Ramalingam Vetrivelan, Dong Kong, Loris L Ferrari, Elda Arrigoni, Joseph C Madara, Sathyajit S Bandaru, Bradford B Lowell, Jun Lu, Clifford B Saper
Currently available evidence indicates that neurons containing melanin-concentrating hormone (MCH) in the lateral hypothalamus are critical modulators of sleep-wakefulness, but their precise role in this function is not clear. Studies employing optogenetic stimulation of MCH neurons have yielded inconsistent results, presumably due to differences in the optogenetic stimulation protocols, which do not approximate normal patterns of cell firing. In order to resolve this discrepancy, we (1) selectively activated the MCH neurons using a chemogenetic approach (Cre-dependent hM3Dq expression) and (2) selectively destroyed MCH neurons using a genetically targeted diphtheria toxin deletion method, and studied the changes in sleep-wake in mice...
November 12, 2016: Neuroscience
Ada Eban-Rothschild, Gideon Rothschild, William J Giardino, Jeff R Jones, Luis de Lecea
Dopaminergic ventral tegmental area (VTA) neurons are critically involved in a variety of behaviors that rely on heightened arousal, but whether they directly and causally control the generation and maintenance of wakefulness is unknown. We recorded calcium activity using fiber photometry in freely behaving mice and found arousal-state-dependent alterations in VTA dopaminergic neurons. We used chemogenetic and optogenetic manipulations together with polysomnographic recordings to demonstrate that VTA dopaminergic neurons are necessary for arousal and that their inhibition suppresses wakefulness, even in the face of ethologically relevant salient stimuli...
October 2016: Nature Neuroscience
Kun Song, Hong Wang, Gretel B Kamm, Jörg Pohle, Fernanda de Castro Reis, Paul Heppenstall, Hagen Wende, Jan Siemens
Body temperature homeostasis is critical for survival and requires precise regulation by the nervous system. The hypothalamus serves as the principal thermostat that detects and regulates internal temperature. We demonstrate that the ion channel TRPM2 [of the transient receptor potential (TRP) channel family] is a temperature sensor in a subpopulation of hypothalamic neurons. TRPM2 limits the fever response and may detect increased temperatures to prevent overheating. Furthermore, chemogenetic activation and inhibition of hypothalamic TRPM2-expressing neurons in vivo decreased and increased body temperature, respectively...
September 23, 2016: Science
Mei Hong Qiu, Michael C Chen, Patrick M Fuller, Jun Lu
Human and animal studies have identified an especially critical role for the brainstem parabrachial (PB) complex in regulating electrocortical (electroencephalogram [EEG]) and behavioral arousal: lesions of the PB complex produce a monotonous high-voltage, slow-wave EEG and eliminate spontaneous behaviors. We report here that targeted chemogenetic activation of the PB complex produces sustained EEG and behavioral arousal in the rat. We further establish, using viral-mediated retrograde activation, that PB projections to the preoptic-basal forebrain and lateral hypothalamus, but not to the thalamus, mediate PB-driven wakefulness...
September 12, 2016: Current Biology: CB
Andrew D Thompson, Nathalie Picard, Lia Min, Michela Fagiolini, Chinfei Chen
According to the prevailing view of neural development, sensory pathways develop sequentially in a feedforward manner, whereby each local microcircuit refines and stabilizes before directing the wiring of its downstream target. In the visual system, retinal circuits are thought to mature first and direct refinement in the thalamus, after which cortical circuits refine with experience-dependent plasticity. In contrast, we now show that feedback from cortex to thalamus critically regulates refinement of the retinogeniculate projection during a discrete window in development, beginning at postnatal day 20 in mice...
September 7, 2016: Neuron
Douglas Funk, Kathleen Coen, Sahar Tamadon, Bruce T Hope, Yavin Shaham, A D Lê
UNLABELLED: The craving response to smoking-associated cues in humans or to intravenous nicotine-associated cues in adult rats progressively increases or incubates after withdrawal. Here, we further characterized incubation of nicotine craving in the rat model by determining whether this incubation is observed after adolescent-onset nicotine self-administration. We also used the neuronal activity marker Fos and the Daun02 chemogenetic inactivation procedure to identify cue-activated neuronal ensembles that mediate incubation of nicotine craving...
August 17, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Tillmann Heinisch, Thomas R Ward
The biotin-streptavidin technology offers an attractive means to engineer artificial metalloenzymes (ArMs). Initiated over 50 years ago by Bayer and Wilchek, the biotin-(strept)avidin techonology relies on the exquisite supramolecular affinity of either avidin or streptavidin for biotin. This versatile tool, commonly referred to as "molecular velcro", allows nearly irreversible anchoring of biotinylated probes within a (strept)avidin host protein. Building upon a visionary publication by Whitesides from 1978, several groups have been exploiting this technology to create artificial metalloenzymes...
September 20, 2016: Accounts of Chemical Research
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"