Read by QxMD icon Read

Temperature monitoring

Tao Wang, Jiejun Wang, Jian He, Chuangui Wu, Wenbo Luo, Yao Shuai, Wanli Zhang, Xiancai Chen, Jian Zhang, Jia Lin
A micro-channel heat sink is a promising cooling method for high power integrated circuits (IC). However, the understanding of such a micro-channel device is not sufficient, because the tools for studying it are very limited. The details inside the micro-channels are not readily available. In this letter, a micro-channel heat sink is comprehensively studied using the integrated temperature sensors. The highly sensitive thin film temperature sensors can accurately monitor the temperature change in the micro-channel in real time...
January 19, 2018: Sensors
Kalle Meller, Markus Piha, Anssi V Vähätalo, Aleksi Lehikoinen
Anthropogenic climate warming has already affected the population dynamics of numerous species and is predicted to do so also in the future. To predict the effects of climate change, it is important to know whether productivity is linked to temperature, and whether species' traits affect responses to climate change. To address these objectives, we analysed monitoring data from the Finnish constant effort site ringing scheme collected in 1987-2013 for 20 common songbird species together with climatic data. Warm spring temperature had a positive linear relationship with productivity across the community of 20 species independent of species' traits (realized thermal niche or migration behaviour), suggesting that even the warmest spring temperatures remained below the thermal optimum for reproduction, possibly due to our boreal study area being closer to the cold edge of all study species' distributions...
January 19, 2018: Oecologia
G Srinivasulu, A J C Bunkan, D Amedro, J N Crowley
The rate coefficient (k1) for the reaction of OH radicals with perfluoro ethyl vinyl ether (PEVE, C2F5OCF[double bond, length as m-dash]CF2) has been measured as a function of temperature (T = 207-300 K) using the technique of pulsed laser photolysis with detection of OH by laser-induced fluorescence (PLP-LIF) at pressures of 50 or 100 Torr N2 bath gas. In addition, the rate coefficient was measured at 298 K and in one atmosphere of air by the relative-rate technique with loss of PEVE and reference reactant monitored in situ by IR absorption spectroscopy...
January 19, 2018: Physical Chemistry Chemical Physics: PCCP
Thinh Q Bui, Bryce J Bjork, P Bryan Changala, Thanh L Nguyen, John F Stanton, Mitchio Okumura, Jun Ye
Quantitative and mechanistically detailed kinetics of the reaction of hydroxyl radical (OH) with carbon monoxide (CO) have been a longstanding goal of contemporary chemical kinetics. This fundamental prototype reaction plays an important role in atmospheric and combustion chemistry, motivating studies for accurate determination of the reaction rate coefficient and its pressure and temperature dependence at thermal reaction conditions. This intricate dependence can be traced directly to details of the underlying dynamics (formation, isomerization, and dissociation) involving the reactive intermediates cis- and trans-HOCO, which can only be observed transiently...
January 2018: Science Advances
Rituparno Mandal, Pranab Jyoti Bhuyan, Pinaki Chaudhuri, Madan Rao, Chandan Dasgupta
Is an active glass different from a conventional passive glass? To address this, we study the dynamics of a dense binary mixture of soft dumbbells, each subject to an active propulsion force and thermal fluctuations. This dense assembly shows dynamical arrest, first to a translational and then to a rotational glass, as one reduces temperature T or the self-propulsion force f. We monitor the dynamics along an iso-relaxation-time contour in the (T-f) plane. We find dramatic differences both in the fragility and in the nature of dynamical heterogeneity, which characterize the onset of glass formation-the activity-induced glass exhibits large swirls or vortices, whose scale is set by activity, and it appears to diverge as one approaches the glass transition...
October 2017: Physical Review. E
Meital Harel, Haim Taitelbaum
The temperature effect on the dynamics and geometry of a mercury droplet (∼150 μm) spreading on a silver substrate (4000 Å) was studied. The system temperature was controlled by a heating stage in the temperature range of -15 °C < T < 25 °C, and the spreading process was monitored using an optical microscope. We studied the wetting dynamics (droplet radius and velocity) as a function of temperature. We found that for all studied temperatures, the spreading radius R(t) grows linearly with time, with a velocity value depending on temperature...
December 2017: Physical Review. E
Iain McKenzie, Stephen P Cottrell
The microscopic dynamics of protons (H^{+}) in poly(ethylene oxide) (PEO) have been investigated through a study of implanted positive muons (Mu^{+}), which can be considered a light proton analog. The exponential decay of the muon spin polarization in zero magnetic field indicated that Mu^{+} hopping is in the fast fluctuation limit between 140 and 310 K and the relaxation rate was found to be sensitive to the glass transition. Mu^{+} dynamics in PEO was monitored via the relaxation of the muon spin polarization in a transverse field of 10 mT...
July 2017: Physical Review. E
Amit Raj Singh, Rony Granek
By integrating elasticity-as described by the Gaussian network model-with bond binding energies that distinguish between different base-pair identities and stacking configurations, we study the force induced melting of a double-stranded DNA (dsDNA). Our approach is a generalization of our previous study of thermal dsDNA denaturation [J. Chem. Phys. 145, 144101 (2016)JCPSA60021-960610.1063/1.4964285] to that induced by force at finite temperatures. It allows us to obtain semimicroscopic information about the opening of the chain, such as whether the dsDNA opens from one of the ends or from the interior, forming an internal bubble...
September 2017: Physical Review. E
Senay Mihcin, Andreas Melzer
Focused ultrasound (FUS/HIFU) relies on ablation of pathological tissues by delivering a sufficiently high level of acoustic energy in situ of the human body. Magnetic Resonance guided FUS (MRgFUS/HIFU) and Ultrasound guided (USgFUS/HIFU) are image guided techniques combined with therapeutic FUS for monitoring purposes. The principles and technologies of FUS/HiFU are described in this paper including the basics of MR guidance techniques and MR temperature mapping. Clinical applications of FUS/HIFU gained CE and FDA approvals for the treatment of various benign and few malignant lesions in the last two decades...
January 18, 2018: Minimally Invasive Therapy & Allied Technologies: MITAT
Chi-Yuan Lee, Chia-Hung Chen, Chao-Hsuan Tsai, Yu-Syuan Wang
To prolong the operating time of unmanned aerial vehicles which use proton exchange membrane fuel cells (PEMFC), the performance of PEMFC is the key. However, a long-term operation can make the Pt particles of the catalyst layer and the pollutants in the feedstock gas bond together (e.g., CO), so that the catalyst loses reaction activity. The performance decay and aging of PEMFC will be influenced by operating conditions, temperature, flow and CO concentration. Therefore, this study proposes the development of an internal real-time wireless diagnostic tool for PEMFC, and uses micro-electro-mechanical systems (MEMS) technology to develop a wireless and thin (<50 μm) flexible integrated (temperature, flow and CO) microsensor...
January 13, 2018: Sensors
Pedro Ramos-Cabrer, Daniel Padro
Stroke consists of the loss of cerebral functions resulting from the interruption of blood supply to a region of the brain, and represents the second cause of death and the leading cause of major disability in adults in Europe. Stroke is a very active field of research at preclinical and clinical levels, and Magnetic Resonance Imaging (MRI) is one of the most powerful tools that scientist and clinicians have for the study of the onset, evolution and consequences of this devastating disease, as well as for the monitoring of the success of available treatments, or for the development of novel therapeutic strategies...
2018: Methods in Molecular Biology
Qilin Hua, Junlu Sun, Haitao Liu, Rongrong Bao, Ruomeng Yu, Junyi Zhai, Caofeng Pan, Zhong Lin Wang
Mechanosensation electronics (or Electronic skin, e-skin) consists of mechanically flexible and stretchable sensor networks that can detect and quantify various stimuli to mimic the human somatosensory system, with the sensations of touch, heat/cold, and pain in skin through various sensory receptors and neural pathways. Here we present a skin-inspired highly stretchable and conformable matrix network (SCMN) that successfully expands the e-skin sensing functionality including but not limited to temperature, in-plane strain, humidity, light, magnetic field, pressure, and proximity...
January 16, 2018: Nature Communications
T Pérez-Pérez, I Pereda-Reyes, E Pozzi, D Oliva-Merencio, M Zaiat
This paper shows the effect of organic shock loads (OSLs) on the anaerobic digestion (AD) of synthetic swine wastewater using an expanded granular sludge bed (EGSB) reactor modified with zeolite. Two reactors (R1 and R2), each with an effective volume of 3.04 L, were operated for 180 days at a controlled temperature of 30 °C and hydraulic retention time of 12 h. In the case of R2, 120 g of zeolite was added. The reactors were operated with an up-flow velocity of 6 m/h. The evolution of pH, total Kjeldahl nitrogen, chemical oxygen demand (COD) and volatile fatty acids (VFAs) was monitored during the AD process with OSL and increases in the organic loading rate (OLR)...
January 2018: Water Science and Technology: a Journal of the International Association on Water Pollution Research
Guohui Yu, Jingdong Hu, Jianping Tan, Yang Gao, Yongfeng Lu, Fu-Zhen Xuan
Pressure sensors with high performance (e.g., a broad pressure sensing range, high sensitivities, rapid response/relaxation speeds, temperature-stable sensing), as well as a cost-effective and highly efficient fabrication method are highly desired for electronic skins. In this research, a high-performance pressure sensor based on microstructured carbon nanotube/polydimethylsiloxane arrays was fabricated using an ultra-violet/ozone (UV/O3) microengineering technique. The UV/O3 microengineering technique is controllable, cost-effective, and highly efficient since it is conducted at room temperature in an ambient environment...
January 17, 2018: Nanotechnology
Ana Caroline Cabral, Jonathan S Stark, Hedda E Kolm, César C Martins
Sewage input and the relationship between chemical markers (linear alkylbenzenes and coprostanol) and fecal indicator bacteria (FIB, Escherichia coli and enterococci), were evaluated in order to establish thresholds values for chemical markers in suspended particulate matter (SPM) as indicators of sewage contamination in two subtropical estuaries in South Atlantic Brazil. Both chemical markers presented no linear relationship with FIB due to high spatial microbiological variability, however, microbiological water quality was related to coprostanol values when analyzed by logistic regression, indicating that linear models may not be the best representation of the relationship between both classes of indicators...
January 12, 2018: Environmental Pollution
Xia Zeng, Xinnuo Xiong, Hongqin Yang, Bin Tang, Qiaohong Du, Quan Hou, Zili Suo, Hui Li
A novel hydrate (SH2O) of nandrolone (NT) was prepared by anti-solvent methods. The crystallization processes with two schemes (A and B) were monitored by in-line near-infrared (NIR) spectroscopy. The amounts of SH2O in powder samples obtained by the anti-solvent crystallization and storage process were quantified by NIR combined with chemometrics methods. In-line NIR spectra from 4500 to 8000 cm-1 were chosen to capture physicochemical changes during the whole crystallization process. The combination of the principal component (PCA) results with offline characterization (scanning electron microscopy, powder x-ray diffraction, NIR) data showed that both schemes yielded high purity SH2O products, but the crystallization speed of Scheme B was significantly accelerated...
January 12, 2018: Journal of Pharmaceutical Sciences
Puja Pradhan, Puruswottam Aryal, Dinesh Attygalle, Abdel-Rahman Ibdah, Prakash Koirala, Jian Li, Khagendra P Bhandari, Geethika K Liyanage, Randy J Ellingson, Michael J Heben, Sylvain Marsillac, Robert W Collins, Nikolas J Podraza
Real time spectroscopic ellipsometry (RTSE) has been applied for in-situ monitoring of the first stage of copper indium-gallium diselenide (CIGS) thin film deposition by the three-stage co-evaporation process used for fabrication of high efficiency thin film photovoltaic (PV) devices. The first stage entails the growth of indium-gallium selenide (In1-xGax)₂Se₃ (IGS) on a substrate of Mo-coated soda lime glass maintained at a temperature of 400 °C. This is a critical stage of CIGS deposition because a large fraction of the final film thickness is deposited, and as a result precise compositional control is desired in order to achieve the optimum performance of the resulting CIGS solar cell...
January 16, 2018: Materials
Jonathan D. LeSar, Nilin M. Rao, Nicholas M. Williams, Jeffrey P. Pantano, Melissa L. Ricci, Lawrence S. Osher, Vincent J. Hetherington, Jill S. Kawalec
Background: We developed a prototype of a novel thermochromic liquid crystal (TLC)–coated fabric with an extended temperature range and enhanced sensitivity. By incorporating color and pattern recognition into the fabric, rapid determination of the underlying pedal temperature is facilitated. The purpose of this study was to evaluate the accuracy of the TLC fabric as a potential diagnostic aid for identifying complications in the high-risk foot. Methods: The hands of 100 individuals were used to compare the mean maximum temperatures indicated by the fabric versus standard thermal camera images...
November 2017: Journal of the American Podiatric Medical Association
Pascal Marrot, Anne Charmantier, Jacques Blondel, Dany Garant
1.Evolutionary adaptation as a response to climate change is expected for fitness-related traits affected by climate and exhibiting genetic variance. Although the relationship between warmer spring temperature and earlier timing of reproduction is well documented, quantifications and predictions of the impact of global warming on natural selection acting on phenology in wild populations remain rare. If global warming affects fitness in a similar way across individuals within a population, or if fitness consequences are independent of phenotypic variation in key-adaptive traits, then no evolutionary response is expected for these traits...
January 16, 2018: Journal of Animal Ecology
L Vanduyfhuys, S M J Rogge, J Wieme, S Vandenbrande, G Maurin, M Waroquier, V Van Speybroeck
Knowledge of the thermodynamic potential in terms of the independent variables allows to characterize the macroscopic state of the system. However, in practice, it is difficult to access this potential experimentally due to irreversible transitions that occur between equilibrium states. A showcase example of sudden transitions between (meta)stable equilibrium states is observed for soft porous crystals possessing a network with long-range structural order, which can transform between various states upon external stimuli such as pressure, temperature and guest adsorption...
January 15, 2018: Nature Communications
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"