Read by QxMD icon Read


Magdalena Dabrowska, Wojciech Juzwa, Wlodzimierz J Krzyzosiak, Marta Olejniczak
Huntington's disease (HD) is a progressive autosomal dominant neurodegenerative disorder caused by the expansion of CAG repeats in the first exon of the huntingtin gene ( HTT ). The accumulation of polyglutamine-rich huntingtin proteins affects various cellular functions and causes selective degeneration of neurons in the striatum. Therapeutic strategies used to date to silence the expression of mutant HTT include antisense oligonucleotides, RNA interference-based approaches and, recently, genome editing with the CRISPR/Cas9 system...
2018: Frontiers in Neuroscience
Maxime W C Rousseaux, Tyler Tschumperlin, Hsiang-Chih Lu, Elizabeth P Lackey, Vitaliy V Bondar, Ying-Wooi Wan, Qiumin Tan, Carolyn J Adamski, Jillian Friedrich, Kirk Twaroski, Weili Chen, Jakub Tolar, Christine Henzler, Ajay Sharma, Aleksandar Bajić, Tao Lin, Lisa Duvick, Zhandong Liu, Roy V Sillitoe, Huda Y Zoghbi, Harry T Orr
Polyglutamine (polyQ) diseases are caused by expansion of translated CAG repeats in distinct genes leading to altered protein function. In spinocerebellar ataxia type 1 (SCA1), a gain of function of polyQ-expanded ataxin-1 (ATXN1) contributes to cerebellar pathology. The extent to which cerebellar toxicity depends on its cognate partner capicua (CIC), versus other interactors, remains unclear. It is also not established whether loss of the ATXN1-CIC complex in the cerebellum contributes to disease pathogenesis...
March 7, 2018: Neuron
X Zhou, C Wang, D Ding, Z Chen, Y Peng, H Peng, X Hou, P Wang, X Hou, W Ye, T Li, H Yang, R Qiu, K Xia, J Sequeiros, B Tang, H Jiang
Multiple system atrophy (MSA) is a complex and multifactorial neurodegenerative disease, and its pathogenesis remains uncertain. Patients with MSA or spinocerebellar ataxia (SCA) show overlapping clinical phenotypes. Previous studies have reported that intermediate or long CAG expansions in SCA genes have been associated with other neurodegenerative disease. In this study, we screened for the number of CAG repeats in ATXN1, 2 and 3 in 200 patients with MSA and 314 healthy controls to evaluate possible associations between (CAG)n in these three polyQ-related genes and MSA...
March 1, 2018: Scientific Reports
Gaia Bazzi, Stefano Podofillini, Emanuele Gatti, Luca Gianfranceschi, Jacopo G Cecere, Fernando Spina, Nicola Saino, Diego Rubolini
The timing of major life-history events, such as migration and moult, is set by endogenous circadian and circannual clocks, that have been well characterized at the molecular level. Conversely, the genetic sources of variation in phenology and in other behavioral traits have been sparsely addressed. It has been proposed that inter-individual variability in the timing of seasonal events may arise from allelic polymorphism at phenological candidate genes involved in the signaling cascade of the endogenous clocks...
October 2017: Current Zoology
Eunseon Oh, Yuhong Liu, Mahesh V Sonar, Diane Merry, Eric Wickstrom
Huntington's disease (HD) is an autosomal-dominant neurodegenerative genetic disorder caused by CAG repeat expansion in exon 1 of the HTT gene. Expression of the mutant gene results in the production of a neurotoxic polyglutamine (polyQ)-expanded huntingtin (Htt) protein. Clinical trials of knockdown therapy of mutant polyglutamine-encoding HTT mRNA in Huntington's disease (HD) have begun. To measure HTT mRNA knockdown effectiveness in human cells, we utilized a fluorescent hybridization imaging agent specific to the region encompassing the human HTT mRNA initiation codon...
February 16, 2018: Bioconjugate Chemistry
Huanhuan Luo, Liying Cao, Xuan Liang, Ana Du, Ting Peng, He Li
In neurodegenerative diseases, pathogenic proteins tend to misfold and form aggregates that are difficult to remove and able to induce excessive endoplasmic reticulum (ER) stress, leading to neuronal injury and apoptosis. Homocysteine-induced endoplasmic reticulum protein (Herp), an E3 ubiquitin ligase, is an important early marker of ER stress and is involved in the ubiquitination and degradation of many neurodegenerative proteins. However, in Huntington's disease (HD), a typical polyglutamine disease, whether Herp is also involved in the metabolism and degradation of the pathogenic protein, mutant huntingtin, has not been reported...
February 12, 2018: Molecular Neurobiology
A S Rix, T J Grove, K M O'Brien
The long evolution of the Antarctic perciform suborder of Notothenioidei in the icy, oxygen-rich waters of the Southern Ocean may have reduced selective pressure to maintain a hypoxic response. To test this hypothesis, cDNA of the key transcriptional regulator of hypoxic genes, hypoxia-inducible factor-1α (HIF-1α), was sequenced in heart ventricles of the red-blooded notothenioid, Notothenia coriiceps, and the hemoglobinless icefish, Chaenocephalus aceratus. HIF-1α cDNA is 4500 base pairs (bp) long and encodes 755 amino acids in N...
December 2017: Polar Biology
Liliana S Mendonça, Isabel Onofre, Catarina Oliveira Miranda, Rita Perfeito, Clévio Nóbrega, Luís Pereira de Almeida
Polyglutamine (polyQ) diseases are a family of neurodegenerative disorders with very heterogeneous clinical presentations, although with common features such as progressive neuronal death. Thus, at the time of diagnosis patients might present an extensive and irreversible neuronal death demanding cell replacement or support provided by cell-based therapies. For this purpose stem cells, which include diverse populations ranging from embryonic stem cells (ESCs), to fetal stem cells, mesenchymal stromal cells (MSCs) or induced pluripotent stem cells (iPSCs) have remarkable potential to promote extensive brain regeneration and recovery in neurodegenerative disorders...
2018: Advances in Experimental Medicine and Biology
Sara Duarte-Silva, Patrícia Maciel
Machado-Joseph disease (MJD), also known as Spinocerebellar Ataxia type 3 (SCA3), is the most common autosomal dominant ataxia worldwide. MJD integrates a large group of disorders known as polyglutamine diseases (polyQ). To date, no effective treatment exists for MJD and other polyQ diseases. Nevertheless, researchers are making efforts to find treatment possibilities that modify the disease course or alleviate disease symptoms. Since neuroimaging studies in mutation carrying individuals suggest that in nervous system dysfunction begins many years before the onset of any detectable symptoms, the development of therapeutic interventions becomes of great importance, not only to slow progression of manifest disease but also to delay, or ideally prevent, its onset...
2018: Advances in Experimental Medicine and Biology
Alice Karam, Yvon Trottier
Spinocerebellar Ataxia type 7 (SCA7, OMIM # 164500) is an autosomal dominant neurodegenerative disorder characterized by adult onset of progressive cerebellar ataxia and blindness. SCA7 is part of the large family of autosomal dominant cerebellar ataxias (ADCAs), and was estimated to account for 1-11.7% of ADCAs in diverse populations. The frequency of SCA7 is higher where local founder effects were observed as in Scandinavia, Korea, South Africa and Mexico. SCA7 is pathomechanistically related to the group of CAG/polyglutamine (polyQ) expansion disorders, which includes other SCAs (1-3, 6 and 17), Huntington's disease, spinal bulbar muscular atrophy and dentatorubro pallidoluysian atrophy...
2018: Advances in Experimental Medicine and Biology
Daniel R Scoles, Stefan M Pulst
Spinocerebellar ataxia type 2 (SCA2) is autosomal dominantly inherited and caused by CAG repeat expansion in the ATXN2 gene. Because the CAG repeat expansion is localized to an encoded region of ATXN2, the result is an expanded polyglutamine (polyQ) tract in the ATXN2 protein. SCA2 is characterized by progressive ataxia, and slow saccades. No treatment for SCA2 exists. ATXN2 mutation causes gains of new or toxic functions for the ATXN2 protein, resulting in abnormally slow Purkinje cell (PC) firing frequency and ultimately PC loss...
2018: Advances in Experimental Medicine and Biology
Constanza J Cortes, Albert R La Spada
Spinal and Bulbar Muscular Atrophy (SBMA) is an inherited neuromuscular disorder caused by a CAG-polyglutamine (polyQ) repeat expansion in the androgen receptor (AR) gene. Unlike other polyQ diseases, where the function of the native causative protein is unknown, the biology of AR is well understood, and this knowledge has informed our understanding of how native AR function interfaces with polyQ-AR dysfunction. Furthermore, ligand-dependent activation of AR has been linked to SBMA disease pathogenesis, and has led to a thorough study of androgen-mediated effects on polyQ-AR stability, degradation, and post-translational modifications, as well as their roles in the disease process...
2018: Advances in Experimental Medicine and Biology
Zhihui Zhu, Georg Reiser
Small heat shock proteins (sHsps) are a group of proteins with molecular mass between 12 and 43 kDa. Currently, 11 members of this family have been classified, namely HspB1 to HspB11. HspB1, HspB2, HspB5, HspB6, HspB7, and HspB8, which are expressed in brain have been observed to be related to the pathology of neurodegenerative diseases, including Parkinson's, Alzheimer's, Alexander's disease, multiple sclerosis, and human immunodeficiency virus-associated dementia. Specifically, sHsps interact with misfolding and damaging protein aggregates, like Glial fibrillary acidic protein in AxD, β-amyloid peptides aggregates in Alzheimer's disease, Superoxide dismutase 1 in Amyotrophic lateral sclerosis and cytosine-adenine-guanine/polyglutamine (CAG/PolyQ) in Huntington's disease, Spinocerebellar ataxia type 3, Spinal-bulbar muscular atrophy, to reduce the toxicity or increase the clearance of these protein aggregates...
February 6, 2018: Neurochemistry International
Giuseppe Manfré, Arianna Novati, Ilaria Faccini, Andrea C Rossetti, Kari Bosch, Raffaella Molteni, Marco A Riva, Johanneke E Van der Harst, Huu Phuc Nguyen, Judith R Homberg
BACKGROUND: Huntington disease (HD) is a devastating inherited neurodegenerative disorder characterized by progressive motor, cognitive, and psychiatric symptoms without any cure to slow down or stop the progress of the disease. The BACHD rat model for HD carrying the human full-length mutant huntingtin protein (mHTT) with 97 polyQ repeats has been recently established as a promising model which reproduces several HD-like features. While motor and cognitive functions have been characterized in BACHD rats, little is known about their social phenotype...
2018: PloS One
Hui Yang, Hong-Wei Yue, Wen-Tian He, Jun-Ye Hong, Lei-Lei Jiang, Hong-Yu Hu
The components of ubiquitin (Ub)-proteasome system, such as Ub, Ub adaptors, or proteasome subunits, are commonly accumulated with the aggregated proteins in inclusions, but how protein aggregates sequester Ub-related proteins remains elusive. Using N-terminal huntingtin (Htt-N552) and ataxin (Atx)-3 as model proteins, we investigated the molecular mechanism underlying sequestration of Ub adaptors by polyQ-expanded proteins. We found that polyQ-expanded Htt-N552 and Atx-3 sequester endogenous Ub adaptors, human RAD23 homolog B (hHR23B) and ubiquilin (UBQLN)-2, into inclusions...
January 11, 2018: FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology
Maxmore Chaibva, Xiang Gao, Pranav Jain, Warren A Campbell, Shelli L Frey, Justin Legleiter
Huntington disease (HD) is an inherited neurodegenerative disease caused by the expansion beyond a critical threshold of a polyglutamine (polyQ) tract near the N-terminus of the huntingtin (htt) protein. Expanded polyQ promotes the formation of a variety of oligomeric and fibrillar aggregates of htt that accumulate into the hallmark proteinaceous inclusion bodies associated with HD. htt is also highly associated with numerous cellular and subcellular membranes that contain a variety of lipids. As lipid homeostasis and metabolism abnormalities are observed in HD patients, we investigated how varying both the sphingomyelin (SM) and ganglioside (GM1) contents modifies the interactions between htt and lipid membranes...
January 31, 2018: ACS Omega
Jason Haaga, J D Gunton, C Nadia Buckles, J M Rickman
In this paper, we study the early stages of aggregation of a model of polyglutamine (polyQ) for different repeat lengths (number of glutamine amino acid groups in the chain). In particular, we use the Large-scale Atomic/Molecular Massively Parallel Simulator to study a generic coarse-grained model proposed by Bereau and Deserno. We focus on the primary nucleation mechanism involved and find that our results for the initial self-assembly process are consistent with the two-dimensional classical nucleation theory of Kashchiev and Auer...
January 28, 2018: Journal of Chemical Physics
Jifeng Guo, Yiting Cui, Qiong Liu, Yang Yang, Yujing Li, Ling Weng, Beisha Tang, Peng Jin, Xiao-Jiang Li, Su Yang, Shihua Li
BACKGROUND: Spinocerebellar ataxia 17 (SCA17) belongs to the family of neurodegenerative diseases caused by polyglutamine (polyQ) expansion. In SCA17, polyQ expansion occurs in the TATA box binding protein (TBP) and leads to the misfolding of TBP and the preferential degeneration in the cerebellar Purkinje neurons. Currently there is no effective treatment for SCA17. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a recently identified neurotrophic factor, and increasing MANF expression ameliorated SCA17 neuropathology in TBP-105Q knock-in (KI) mouse model, indicating that MANF could be a therapeutic target for treating SCA17...
January 30, 2018: Molecular Neurodegeneration
Jonasz Jeremiasz Weber, Simon Johannes Kloock, Maike Nagel, Midea Malena Ortiz-Rios, Julian Hofmann, Olaf Riess, Huu Phuc Nguyen
Deciphering the molecular pathology of Huntington disease is of particular importance, not only for a better understanding of this neurodegenerative disease, but also to identify potential therapeutic targets. The polyglutamine-expanded disease protein huntingtin was shown to undergo proteolysis, which results in the accumulation of toxic and aggregation-prone fragments. Amongst several classes of proteolytic enzymes responsible for huntingtin processing, the group of calcium-activated calpains has been found to be a significant mediator of the disease protein toxicity...
January 17, 2018: Neuropharmacology
Ryan Higgins, Marie-Helene Kabbaj, Alexa Hatcher, Yanchang Wang
The functionality of a protein depends on its correct folding, but newly synthesized proteins are susceptible to aberrant folding and aggregation. Heat shock proteins (HSPs) function as molecular chaperones that aid in protein folding and the degradation of misfolded proteins. Trinucleotide (CAG) repeat expansion in the Huntingtin gene (HTT) results in the expression of misfolded Huntingtin protein (Htt), which contributes to the development of Huntington's disease. We previously found that the degradation of mutated Htt with polyQ expansion (Htt103QP) depends on both ubiquitin proteasome system and autophagy...
2018: PloS One
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"