Read by QxMD icon Read

ryanodine receptor

Yong Xie, Zhen-Jie Gu, Mao-Xiong Wu, Tu-Cheng Huang, Jing-Song Ou, Huiping-Son Ni, Mao-Huan Lin, Wo-Liang Yuan, Jing-Feng Wang, Yang-Xin Chen
AIMS: Adverse cardiovascular effects induced by peroxisome proliferator activator receptor-γ (PPAR-γ) activation were observed in clinical setting. But the underlying mechanism is unclear. Now, transgenic mice with cardiac specific peroxisome proliferator activator receptor-γ overexpression (TG-PPAR-γ) were used to explore the possible mechanisms. MATERIALS AND METHODS: Cardiac tissues from TG-PPAR-γ mice, a PPAR-γ over-expressing human cardiomyocyte line AC16 cell, and PPAR-γ agonist-treated primary cardiomyocytes were used to evaluate the expression of cardiac calcium regulatory proteins as sarcoplasmic reticulum Ca(2+) ATPase, Na(+)/Ca(2+)exchanger 1, ryanodine receptor 2 and phospholamban...
October 13, 2016: Life Sciences
Yohannes Shiferaw
Spontaneous calcium (Ca) waves in cardiac myocytes are known to underlie a wide range of cardiac arrhythmias. However, it is not understood which physiological parameters determine the onset of waves. In this study, we explore the relationship between Ca signaling between ion channels and the nucleation of Ca waves. In particular, we apply a master equation approach to analyze the stochastic interaction between neighboring clusters of ryanodine receptor (RyR) channels. Using this analysis, we show that signaling between clusters can be described as a barrier hopping process with exponential sensitivity to system parameters...
September 2016: Physical Review. E
Fábio V G Campanha, Denise Perone, Dijon H S de Campos, Renata de A M Luvizotto, Maria T De Síbio, Miriane de Oliveira, Regiane M C Olimpio, Fernanda C F Moretto, Carlos R Padovani, Gláucia M F S Mazeto, Antonio C Cicogna, Célia R Nogueira
Objective: The current study was aimed at analyzing sarcoplasmic reticulum Ca2+ ATPase (Serca2) and ryanodine receptor type 2 (Ryr2) gene expression in rats subjected to surgery that induced HF and were subsequently treated with T4 using physiological doses. Materials and methods: HF was induced in 18 male Wistar rats by clipping the ascending thoracic aorta to generate aortic stenosis (HFS group), while the control group (9-sham) underwent thoracotomy. After 21 weeks, the HFS group was subdivided into two subgroups...
October 10, 2016: Archives of Endocrinology and Metabolism
Zhichao Xiao, Wenting Guo, Bo Sun, Donald J Hunt, Jinhong Wei, Yingjie Liu, Yundi Wang, Ruiwu Wang, Peter P Jones, Thomas G Back, S R Wayne Chen
Recent three-dimensional structural studies reveal that the Central domain of ryanodine receptor (RyR) serves as a transducer that converts long-range conformational changes into the gating of the channel pore. Interestingly, the Central domain encompasses one of the mutation hotspots (corresponding to amino acid residues 3778-4201) that contains a number of cardiac RyR (RyR2) mutations associated with catecholaminergic polymorphic ventricular tachycardia (CPVT) and atrial fibrillation (AF). However, the functional consequences of these Central domain RyR2 mutations are not well understood...
October 12, 2016: Journal of Biological Chemistry
Kaivan Khavandi, Rachael L Baylie, Sarah A Sugden, Majid Ahmed, Viktoria Csato, Philip Eaton, David C Hill-Eubanks, Adrian D Bonev, Mark T Nelson, Adam S Greenstein
Activation of Ca(2+)-sensitive, large-conductance potassium (BK) channels in vascular smooth muscle cells (VSMCs) by local, ryanodine receptor-mediated Ca(2+) signals (Ca(2+) sparks) acts as a brake on pressure-induced (myogenic) vasoconstriction-a fundamental mechanism that regulates blood flow in small resistance arteries. We report that physiological intraluminal pressure within resistance arteries activated cGMP-dependent protein kinase (PKG) in VSMCs through oxidant-induced formation of an intermolecular disulfide bond between cysteine residues...
October 11, 2016: Science Signaling
Ann P Quick, Qiongling Wang, Leonne E Philippen, Giselle Barreto-Torres, David Y Chiang, David L Beavers, Guoliang Wang, Maha Khalid, Julia O Reynolds, Hannah M Campbell, Jordan Showell, Mark D McCauley, Arjen Scholten, Xander H Wehrens
RATIONALE: Junctional membrane complexes (JMC) in myocytes are critical microdomains, in which excitation-contraction coupling occurs. Structural and functional disruption of JMCs underlies contractile dysfunction in failing hearts. However, the role of newly identified JMC protein striated muscle preferentially expressed gene (SPEG) remains unclear. OBJECTIVE: To determine the role of SPEG in healthy and failing adult hearts. MMethods and Results: Proteomic analysis of immunoprecipatated JMC-proteins ryanodine receptor type-2 (RyR2) and junctophilin-2 (JPH2) followed by mass spectrometry identified the serine-threonine kinase SPEG as the only novel binding partner for both proteins...
October 11, 2016: Circulation Research
Donald M Bers
No abstract text is available yet for this article.
October 7, 2016: Heart Rhythm: the Official Journal of the Heart Rhythm Society
Ryan L O'Hare Doig, Carole A Bartlett, Nicole M Smith, Stuart I Hodgetts, Sarah A Dunlop, Livia Hool, Melinda Fitzgerald
Combinations of Ca(2+) channel inhibitors have been proposed as an effective means to prevent excess Ca(2+) flux and death of neurons and glia following neurotrauma in vivo. However, it is not yet known if beneficial outcomes such as improved viability have been due to direct effects on intracellular Ca(2+) concentrations. Here, the effects of combinations of Lomerizine (Lom), YM872, memantine and/or oxATP to block voltage gated Ca(2+) channels, Ca(2+) permeable AMPA receptors, NMDA receptors and purinergic P2X7 receptors (P2X7R) respectively, on Ca(2+) concentration and viability of primary mixed cortical cultures exposed to hydrogen peroxide (H2O2) insult, were assessed...
October 7, 2016: Neuroscience
Zhangjiang He, Linli Luo, Nemat O Keyhani, Xiaodong Yu, Shenghua Ying, Yongjun Zhang
Protein O-mannosyltransferases (Pmts) belong to a highly conserved protein family responsible for the initiation of O-glycosylation of many proteins. Pmts contain one dolichyl-phosphate-mannose-protein mannosyltransferases (PMT) domain and three MIR motifs (mannosyltransferase, inositol triphosphate, and ryanodine receptor) that are essential for activity in yeast. We report that in the insect fungal pathogen, Beauveria bassiana, deletion of the C-terminal Pmt1 MIR-containing region (Pmt1∆ (311-902)) does not alter O-mannosyltransferase activity, but does increase total cell wall protein O-mannosylation levels and results in phenotypic changes in fungal development and cell wall stability...
October 8, 2016: Applied Microbiology and Biotechnology
Elzbieta Zieminska, Jacek Lenart, Dominik Diamandakis, Jerzy W Lazarewicz
Using primary cultures of rat cerebellar granule cells (CGC) we examined the role of calcium transients induced by tetrabromobisphenol A (TBBPA) in triggering oxidative stress and cytotoxicity. CGC were exposed for 30 min to 10 or 25 µM TBBPA. Changes in intracellular calcium concentration ([Ca(2+)]i), in the production of reactive oxygen species (ROS), and in the potential of mitochondria (∆Ψm) were measured fluorometrically during the exposure. The intracellular glutathione (GSH) and catalase activity were determined after the incubation; cell viability was evaluated 24 h later...
October 7, 2016: Neurochemical Research
R M Downs, M A Hughes, S T Kinsey, M C Johnson, B L Baumgarner
Caffeine is a widely consumed stimulant that has previously been shown to promote cytotoxic stress and even cell death in numerous mammalian cell lines. Thus far there is little information available regarding the toxicity of caffeine in skeletal muscle cells. Our preliminary data revealed that treating C2C12 myotubes with 5 mM caffeine for 6 h increased nuclear fragmentation and reduced basal and maximal oxygen consumption rate (OCR) in skeletal myotubes. The purpose of this study was to further elucidate the pathways by which caffeine increased cell death and reduced mitochondrial respiration...
October 4, 2016: Biochemical and Biophysical Research Communications
Seigo Sugimachi, Yukihisa Matsumoto, Makoto Mizunami, Jiro Okada
Caffeine is a plant-derived alkaloid that is generally known as a central nervous system (CNS) stimulant. In order to examine the effects of caffeine on higher CNS functions in insects, we used an appetitive olfactory learning paradigm for the cricket Gryllus bimaculatus. Crickets can form significant long-term memories (LTMs) after repetitive training sessions, during which they associate a conditioned stimulus (CS: odor) with an unconditioned stimulus (US: reward). Administration of hemolymphal injections of caffeine established LTM after only single-trial conditioning over a wide range of caffeine dosages (1...
October 2016: Zoological Science
John E Casida, Kathleen A Durkin
Pesticide researchers are students of nature, and each new compound and mechanism turns a page in the ever-expanding encyclopedia of life. Pesticides are both probes to learn about life processes and tools for pest management to facilitate food production and enhance health. In contrast to some household and industrial chemicals, pesticides are assumed to be hazardous to health and the environment until proven otherwise. About a thousand current pesticides working by more than 100 different mechanisms have helped understand many processes and coupled events...
October 7, 2016: Chemical Research in Toxicology
Wei Peng, Huaizong Shen, Jianping Wu, Wenting Guo, Xiaojing Pan, Ruiwu Wang, S R Wayne Chen, Nieng Yan
RyR2 is a high-conductance intracellular Ca(2+) channel that controls the release of Ca(2+) from the sarco(endo)plasmic reticulum of a variety of cells. Here, we report the structures of RyR2 from porcine heart in both the open and closed states at near atomic resolutions determined using single-particle electron cryomicroscopy. Structural comparison reveals breathing motion of the overall cytoplasmic region resulted from the interdomain movements of amino-terminal domains (NTDs), Helical domains, and Handle domains, whereas little intradomain shifts are observed in these armadillo repeats-containing domains...
September 22, 2016: Science
Saptarshi Mukherjee, N Lowri Thomas, Alan J Williams
The flow of ions through membrane channels is precisely regulated by gates. The architecture and function of these elements have been studied extensively, shedding light on the mechanisms underlying gating. Recent investigations have focused on ion occupancy of the channel's selectivity filter and its ability to alter gating, with most studies involving prokaryotic K(+) channels. Some studies used large quaternary ammonium blocker molecules to examine the effects of altered ionic flux on gating. However, the absence of blocking events that are visibly distinct from closing events in K(+) channels makes unambiguous interpretation of data from single channel recordings difficult...
October 5, 2016: Scientific Reports
Hanting Yang, Miaohui Hu, Jianli Guo, Xiaomin Ou, Tanxi Cai, Zhenfeng Liu
Intracellular Ca(2+) signalling processes are fundamental to muscle contraction, neurotransmitter release, cell growth and apoptosis. Release of Ca(2+) from the intracellular stores is supported by a series of ion channels in sarcoplasmic or endoplasmic reticulum (SR/ER). Among them, two isoforms of the trimeric intracellular cation (TRIC) channel family, named TRIC-A and TRIC-B, modulate the release of Ca(2+) through the ryanodine receptor or inositol triphosphate receptor, and maintain the homeostasis of ions within SR/ER lumen...
October 3, 2016: Nature
A F Dulhunty, L Wei-LaPierre, M G Casarotto, N A Beard
The core skeletal muscle ryanodine receptor (RyR1) calcium release complex extends through three compartments of the muscle fibre, linking the extracellular environment through the cytoplasmic junctional gap to the lumen of the internal sarcoplasmic reticulum (SR) calcium store. The protein complex is essential for skeletal excitation-contraction (EC-) coupling and skeletal muscle function. Its importance is highlighted by perinatal death if any one of the EC-coupling components are missing and by myopathies associated with mutation of any of the proteins...
October 1, 2016: Clinical and Experimental Pharmacology & Physiology
Adam S Helms, Francisco J Alvarado, Jaime Yob, Vi T Tang, Francis Pagani, Mark W Russell, Héctor H Valdivia, Sharlene M Day
BACKGROUND: -Aberrant calcium signaling may contribute to arrhythmias and adverse remodeling in hypertrophic cardiomyopathy (HCM). Mutations in sarcomere genes may distinctly alter calcium handling pathways. METHODS: -We analyzed gene expression, protein levels, and functional assays for calcium regulatory pathways in human HCM surgical samples with (n=25) and without (n=10) sarcomere mutations compared with control hearts (n=8). RESULTS: -Gene expression and protein levels for calsequestrin, L-type calcium channel, sodium-calcium exchanger, phospholamban (PLN), calcineurin, and calcium/calmodulin-dependent protein kinase type II (CaMKII) were similar in HCM compared to controls...
September 29, 2016: Circulation
Oliver B Clarke, Wayne A Hendrickson
Ryanodine receptors (RyRs) are intracellular cation channels that mediate the rapid and voluminous release of Ca(2+) from the sarcoplasmic reticulum (SR) as required for excitation-contraction coupling in cardiac and skeletal muscle. Understanding of the architecture and gating of RyRs has advanced dramatically over the past two years, due to the publication of high resolution cryo-electron microscopy (cryoEM) reconstructions and associated atomic models of multiple functional states of the skeletal muscle receptor, RyR1...
August 2016: Current Opinion in Structural Biology
Steven D Aird, Alejandro Villar Briones, Michael C Roy, Alexander S Mikheyev
While decades of research have focused on snake venom proteins, far less attention has been paid to small organic venom constituents. Using mostly pooled samples, we surveyed 31 venoms (six elapid, six viperid, and 19 crotalid) for spermine, spermidine, putrescine, and cadaverine. Most venoms contained all four polyamines, although some in essentially trace quantities. Spermine is a potentially significant component of many viperid and crotalid venoms (≤0.16% by mass, or 7.9 µmol/g); however, it is almost completely absent from elapid venoms assayed...
2016: Toxins
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"