Read by QxMD icon Read

stent AND zinc

Ehsan Mostaed, Malgorzata Sikora-Jasinska, Jaroslaw W Drelich, Maurizio Vedani
The search for biodegradable metals with mechanical properties equal or higher to those of currently used permanent biomaterials, such as stainless steels, cobalt chromium and titanium alloys, desirable in vivo degradation rate and uniform corrosion is still an open challenge. Magnesium (Mg), iron (Fe) and zinc (Zn)-based alloys have been proposed as biodegradable metals for medical applications. Over the last two decades, extensive research has been done on Mg and Fe. Fe-based alloys show appropriate mechanical properties, but their degradation rate is an order of magnitude below the benchmark value...
April 15, 2018: Acta Biomaterialia
Hualan Jin, Shan Zhao, Roger Guillory, Patrick K Bowen, Zhiyong Yin, Adam Griebel, Jeremy Schaffer, Elisha J Earley, Jeremy Goldman, Jaroslaw W Drelich
It is still an open challenge to find a biodegradable metallic material exhibiting sufficient mechanical properties and degradation behavior to serve as an arterial stent. In this study, Zn-Mg alloys of 0.002 (Zn-002Mg), 0.005 (Zn-005Mg) and 0.08wt% Mg (Zn-08Mg) content were cast, extruded and drawn to 0.25mm diameter, and evaluated as potential biodegradable stent materials. Structural analysis confirmed formation of Mg2 Zn11 intermetallic in all three alloys with the average grain size decreasing with increasing Mg content...
March 1, 2018: Materials Science & Engineering. C, Materials for Biological Applications
Hongtao Yang, Cong Wang, Chaoqiang Liu, Houwen Chen, Yifan Wu, Jintao Han, Zichang Jia, Wenjiao Lin, Deyuan Zhang, Wenting Li, Wei Yuan, Hui Guo, Huafang Li, Guangxin Yang, Deling Kong, Donghui Zhu, Kazuki Takashima, Liqun Ruan, Jianfeng Nie, Xuan Li, Yufeng Zheng
In the present study, pure zinc stents were implanted into the abdominal aorta of rabbits for 12 months. Multiscale analysis including micro-CT, scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM) and histological stainings was performed to reveal the fundamental degradation mechanism of the pure zinc stent and its biocompatibility. The pure zinc stent was able to maintain mechanical integrity for 6 months and degraded 41.75 ± 29.72% of stent volume after 12 months implantation...
August 16, 2017: Biomaterials
Adam J Drelich, Shan Zhao, Roger J Guillory, Jaroslaw W Drelich, Jeremy Goldman
Metallic zinc implanted into the abdominal aorta of rats out to 6months has been demonstrated to degrade while avoiding responses commonly associated with the restenosis of vascular implants. However, major questions remain regarding whether a zinc implant would ultimately passivate through the production of stable corrosion products or via a cell mediated fibrous encapsulation process that prevents the diffusion of critical reactants and products at the metal surface. Here, we have conducted clinically relevant long term in vivo studies in order to characterize late stage zinc implant biocorrosion behavior and products to address these critical questions...
August 2017: Acta Biomaterialia
Patrick K Bowen, Jan-Marten Seitz, Roger J Guillory, Jacob P Braykovich, Shan Zhao, Jeremy Goldman, Jaroslaw W Drelich
Special high grade zinc and wrought zinc-aluminum (Zn-Al) alloys containing up to 5.5 wt % Al were processed, characterized, and implanted in rats in search of a new family of alloys with possible applications as bioabsorbable endovascular stents. These materials retained roll-induced texture with an anisotropic distribution of the second-phase Al precipitates following hot-rolling, and changes in lattice parameters were observed with respect to Al content. Mechanical properties for the alloys fell roughly in line with strength (190-240 MPa yield strength; 220-300 MPa ultimate tensile strength) and elongation (15-30%) benchmarks, and favorable elastic ranges (0...
January 2018: Journal of Biomedical Materials Research. Part B, Applied Biomaterials
Jialin Niu, Zibo Tang, Hua Huang, Jia Pei, Hua Zhang, Guangyin Yuan, Wenjiang Ding
Zn-based alloys have been viewed as new potential materials for biodegradable implants, such as cardiovascular stents, mainly in consideration of their lower corrosion rate when compared with that of Mg alloys. In this study we developed a new Zinc-4wt.%Copper (Zn-4Cu) alloy as a biodegradable material. Hot extrusion was applied to Zn-4Cu to refine the microstructure and consequently improve its mechanical properties and corrosion resistance. After extrusion, dendritic CuZn5 phases were broken and distributed along the extrusion direction...
December 1, 2016: Materials Science & Engineering. C, Materials for Biological Applications
Jun Ma, Nan Zhao, Donghui Zhu
Bioabsorbable metal zinc (Zn) is a promising new generation of implantable scaffold for cardiovascular and orthopedic applications. In cardiovascular stent applications, zinc ion (Zn(2+)) will be gradually released into the surrounding vascular tissues from such Zn-containing scaffolds after implantation. However, the interactions between vascular cells and Zn(2+) are still largely unknown. We explored the short-term effects of extracellular Zn(2+) on human smooth muscle cells (SMCs) up to 24 h, and an interesting biphasic effect of Zn(2+) was observed...
2016: Scientific Reports
Patrick K Bowen, Emily R Shearier, Shan Zhao, Roger J Guillory, Feng Zhao, Jeremy Goldman, Jaroslaw W Drelich
Metallic stents are used to promote revascularization and maintain patency of plaqued or damaged arteries following balloon angioplasty. To mitigate the long-term side effects associated with corrosion-resistant stents (i.e., chronic inflammation and late stage thrombosis), a new generation of so-called "bioabsorbable" stents is currently being developed. The bioabsorbable coronary stents will corrode and be absorbed by the artery after completing their task as vascular scaffolding. Research spanning the last two decades has focused on biodegradable polymeric, iron-based, and magnesium-based stent materials...
May 2016: Advanced Healthcare Materials
Connor W McCarthy, Roger J Guillory, Jeremy Goldman, Megan C Frost
Nitric oxide (NO), identified over the last several decades in many physiological processes and pathways as both a beneficial and detrimental signaling molecule, has been the subject of extensive research. Physiologically, NO is transported by a class of donors known as S-nitrosothiols. Both endogenous and synthetic S-nitrosothiols have been reported to release NO during interactions with certain transition metals, primarily Cu(2+) and Fe(2+). Ag(+) and Hg(2+) have also been identified, although these metals are not abundantly present in physiological systems...
April 27, 2016: ACS Applied Materials & Interfaces
Patrick K Bowen, Roger J Guillory, Emily R Shearier, Jan-Marten Seitz, Jaroslaw Drelich, Martin Bocks, Feng Zhao, Jeremy Goldman
Although corrosion resistant bare metal stents are considered generally effective, their permanent presence in a diseased artery is an increasingly recognized limitation due to the potential for long-term complications. We previously reported that metallic zinc exhibited an ideal biocorrosion rate within murine aortas, thus raising the possibility of zinc as a candidate base material for endovascular stenting applications. This study was undertaken to further assess the arterial biocompatibility of metallic zinc...
November 1, 2015: Materials Science & Engineering. C, Materials for Biological Applications
Yunan Yue, Lili Wang, Nuo Yang, Jinglin Huang, Licheng Lei, Huiming Ye, Lihui Ren, Shuixiang Yang
OBJECTIVES: To access the biocompatibility, effectiveness, and safety of biodegradable magnesium (Mg) alloy stent (BMAS) in the coronary artery and femoral artery. BACKGROUND: Atherosclerosis is a lesion of cardiovascular system, including the diseases in heart and blood vessels. METHODS: The aluminum (Al) and zinc (Zn)-based BMAS was designed by cold drawing methods. Forty healthy immunized mongrel dogs were randomly divided into 8 groups...
August 2015: Journal of Interventional Cardiology
Jan-Marten Seitz, Martin Durisin, Jeremy Goldman, Jaroslaw W Drelich
Sutures that biodegrade and dissolve over a period of several weeks are in great demand to stitch wounds and surgical incisions. These new materials are receiving increased acceptance across surgical procedures whenever permanent sutures and long-term care are not needed. Unfortunately, both inflammatory responses and adverse local tissue reactions in the close-to-stitching environment are often reported for biodegradable polymeric sutures currently used by the medical community. While bioabsorbable metals are predominantly investigated and tested for vascular stent or osteosynthesis applications, they also appear to possess adequate bio-compatibility, mechanical properties, and corrosion stability to replace biodegradable polymeric sutures...
September 16, 2015: Advanced Healthcare Materials
T Y Nguyen, A F Cipriano, Ren-Guo Guan, Zhan-Yong Zhao, Huinan Liu
Magnesium (Mg) alloy is an attractive class of metallic biomaterial for cardiovascular applications due to its biodegradability and mechanical properties. In this study, we investigated the degradation in blood, thrombogenicity, and cytocompatibility of Magnesium-Zinc-Strontium (Mg-Zn-Sr) alloys, specifically four Mg-4 wt % Zn-xSr (x = 0.15, 0.5, 1, and 1.5 wt %) alloys, together with pure Mg control and relevant reference materials for cardiovascular applications. Human whole blood and platelet rich plasma (PRP) were used as the incubation media to investigate the degradation behavior of the Mg-Zn-Sr alloys...
September 2015: Journal of Biomedical Materials Research. Part A
Maurício S Ribeiro, Renata Dellalibera-Joviliano, Christiane Becari, Felipe Roberti Teixeira, Paula Vasconcelos Araujo, Carlos E Piccinato, Cesar Presto Campos, Paulo Roberto B Evora, Edwaldo E Joviliano
BACKGROUND: The kallikrein-kinin system (KKS) has several direct and indirect effects on cells and cellular mediators involved in the inflammatory process. Studies about inflammation on percutaneous transluminal angioplasty with stent (PTA/stent) to treat peripheral arterial disease (PAD) in humans are scarce. The matrix metalloproteinases (MMPs) are calcium-dependent zinc-containing endopeptidases expressed in various cells and tissues such as fibroblasts, inflammatory cells, and, smooth muscle cells...
May 2014: Annals of Vascular Surgery
Yigang Chen, Jun Yan, Changli Zhao, Shaoxiang Zhang, Song Yu, Zigang Wang, Xiaohu Wang, Xiaonong Zhang, Qi Zheng
There is a great clinical need for biodegradable bile duct stents. Biodegradable stents made of an Mg-6Zn alloy were investigated in both vivo animal experiment and in vitro cell experiments. During the in vivo experiments, blood biochemical tests were performed to determine serum magnesium, serum creatinine (CREA), blood urea nitro-gen (BUN), serum lipase (LPS), total bilirubin (TB) and glutamic-pyruvic transaminase (GPT) levels. Moreover, tissue samples of common bile duct (CBD), liver and kidney were taken for histological evaluation...
February 2014: Journal of Materials Science. Materials in Medicine
Patrick K Bowen, Jaroslaw Drelich, Jeremy Goldman
Zinc is proposed as an exciting new biomaterial for use in bioabsorbable cardiac stents. Not only is zinc a physiologically relevant metal with behavior that promotes healthy vessels, but it combines the best behaviors of both current bioabsorbable stent materials: iron and magnesium. Shown here is a composite image of zinc degradation in a murine (rat) artery.
May 14, 2013: Advanced Materials
Michael Chorny, Ilia Fishbein, Jillian E Tengood, Richard F Adamo, Ivan S Alferiev, Robert J Levy
Gene therapeutic strategies have shown promise in treating vascular disease. However, their translation into clinical use requires pharmaceutical carriers enabling effective, site-specific delivery as well as providing sustained transgene expression in blood vessels. While replication-deficient adenovirus (Ad) offers several important advantages as a vector for vascular gene therapy, its clinical applicability is limited by rapid inactivation, suboptimal transduction efficiency in vascular cells, and serious systemic adverse effects...
June 2013: FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology
Qiuming Peng, Kun Li, Zengsheng Han, Erde Wang, Zhigang Xu, Riping Liu, Yongjun Tian
The objective of this study was to prepare a new biodegradable Mg-based biomaterial, which provides good mechanical integrity in combination with anti-inflammatory function during the degradation process. The silver element was used, because it improved the mechanical properties as an effective grain refiner and it is also treated as a potential anti-inflammatory core. The new degradable Mg-Zn-Ag biomaterial was prepared by zone solidification technology and extrusion. The mechanical properties were mostly enhanced by fine grain strengthening...
July 2013: Journal of Biomedical Materials Research. Part A
E Pellicer, S González, A Blanquer, S Suriñach, M D Baró, L Barrios, E Ibáñez, C Nogués, J Sort
The evolution of microstructure and mechanical properties of almost fully amorphous Mg(72) Zn(23) Ca(5) and crystalline Mg(70) Zn(23) Ca(5) Pd(2) alloys during immersion in Hank's balanced salt solution (HBSS), as well as their cytocompatibility, are investigated in order to assess the feasibility of both materials as biodegradable implants. Though the crystalline Mg(70) Zn(23) Ca(5) Pd(2) sample shows lower wettability and more positive corrosion potential, this sample degrades much faster upon incubation in HBSS as a consequence of the formation of micro-galvanic couples between the nobler Pd-rich dendrites and the surrounding phases...
February 2013: Journal of Biomedical Materials Research. Part A
Qiong Wu, Shijie Zhu, Liguo Wang, Qian Liu, Gaochao Yue, Jun Wang, Shaokang Guan
Magnesium alloys are promising candidate materials for cardiovascular stents due to their good biocompatibility and degradation properties in the human body. However, in vivo tests also show that improvement in their mechanical properties and corrosion resistance is necessary before wide application. In this study, cyclic extrusion compression (CEC) was used to enhance the mechanical properties and corrosion resistance of Mg-Zn-Y-Nd alloy. The results show that the grain size was greatly refined to 1 μm after CEC treatment...
April 2012: Journal of the Mechanical Behavior of Biomedical Materials
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"