Read by QxMD icon Read

Engineered Cationic Antibiotic peptides

Bung-On Prajanban, Nisachon Jangpromma, Tomohiro Araki, Sompong Klaynongsruang
In light of the increasing threat of bacterial drug resistance to human health on a global scale, research and development of antimicrobial peptides as a novel class of potent antibiotics has gained considerable attention. The present study focuses on the structural evaluation and membrane interaction of two new cationic antimicrobial peptides, cOT2 and sOT2, derived from Siamese crocodile (Crocodylus siamensis) and Chinese softshell turtle (Pelodiscus sinensis) ovotransferrins. Here, cOT1 (+3) and sOT1 (+3) were derived from reptile ovotransferrins by chromatographic purification and characterized by mass spectrometry and N-terminal sequencing analysis...
February 1, 2017: Biochimica et Biophysica Acta
Chih-Yun Hsia, Linxiao Chen, Rohit R Singh, Matthew P DeLisa, Susan Daniel
The bacterial outer membrane (OM) is a barrier containing membrane proteins and liposaccharides that fulfill crucial functions for Gram-negative bacteria. With the advent of drug-resistant bacteria, it is necessary to understand the functional role of this membrane and its constituents to enable novel drug designs. Here we report a simple method to form an OM-like supported bilayer (OM-SB), which incorporates native lipids and membrane proteins of gram-negative bacteria from outer membrane vesicles (OMVs). We characterize the formation of OM-SBs using quartz crystal microbalance with dissipation (QCM-D) and fluorescence microscopy...
September 7, 2016: Scientific Reports
David Pulido, Guillem Prats-Ejarque, Clara Villalba, Marcel Albacar, Juan J González-López, Marc Torrent, Mohammed Moussaoui, Ester Boix
Eradication of established biofilm communities of pathogenic Gram-negative species is one of the pending challenges for the development of new antimicrobial agents. In particular, Pseudomonas aeruginosa is one of the main dreaded nosocomial species, with a tendency to form organized microbial communities that offer an enhanced resistance to conventional antibiotics. We describe here an engineered antimicrobial peptide (AMP) which combines bactericidal activity with a high bacterial cell agglutination and lipopolysaccharide (LPS) affinity...
October 2016: Antimicrobial Agents and Chemotherapy
Jeffrey A Melvin, Lauren P Lashua, Megan R Kiedrowski, Guanyi Yang, Berthony Deslouches, Ronald C Montelaro, Jennifer M Bomberger
Antimicrobial-resistant infections are an urgent public health threat, and development of novel antimicrobial therapies has been painstakingly slow. Polymicrobial infections are increasingly recognized as a significant source of severe disease and also contribute to reduced susceptibility to antimicrobials. Chronic infections also are characterized by their ability to resist clearance, which is commonly linked to the development of biofilms that are notorious for antimicrobial resistance. The use of engineered cationic antimicrobial peptides (eCAPs) is attractive due to the slow development of resistance to these fast-acting antimicrobials and their ability to kill multidrug-resistant clinical isolates, key elements for the success of novel antimicrobial agents...
May 2016: MSphere
Lauren P Lashua, Jeffrey A Melvin, Berthony Deslouches, Joseph M Pilewski, Ronald C Montelaro, Jennifer M Bomberger
OBJECTIVES: Chronic infections with the opportunistic pathogen Pseudomonas aeruginosa are responsible for the majority of the morbidity and mortality in patients with cystic fibrosis (CF). While P. aeruginosa infections may initially be treated successfully with standard antibiotics, chronic infections typically arise as bacteria transition to a biofilm mode of growth and acquire remarkable antimicrobial resistance. To address the critical need for novel antimicrobial therapeutics that can effectively suppress chronic bacterial infections in challenging physiological environments, such as the CF lung, we have rationally designed a de novo engineered cationic antimicrobial peptide, the 24-residue WLBU2, with broad-spectrum antibacterial activity for pan-drug-resistant P...
August 2016: Journal of Antimicrobial Chemotherapy
Berthony Deslouches, Mary L Hasek, Jodi K Craigo, Jonathan D Steckbeck, Ronald C Montelaro
We previously reported a series of de novo engineered cationic antibiotic peptides (eCAPs) consisting exclusively of arginine and tryptophan (WR) that display potent activity against diverse multidrug-resistant (MDR) bacterial strains. In this study, we sought to examine the influence of arginine compared to lysine on antibacterial properties by direct comparison of the WR peptides (8-18 residues) with a parallel series of engineered peptides containing only lysine and tryptophan. WR and WK series were compared for antibacterial activity by bacterial killing and growth inhibition assays and for mechanism of peptide-bacteria interactions by surface plasmon resonance and flow cytometry...
June 2016: Journal of Medical Microbiology
Berthony Deslouches, Jonathan D Steckbeck, Jodi K Craigo, Yohei Doi, Jane L Burns, Ronald C Montelaro
Multidrug resistance constitutes a threat to the medical achievements of the last 50 years. In this study, we demonstrated the abilities of two de novo engineered cationic antibiotic peptides (eCAPs), WLBU2 and WR12, to overcome resistance from 142 clinical isolates representing the most common multidrug-resistant (MDR) pathogens and to display a lower propensity to select for resistant bacteria in vitro compared to that with colistin and LL37. The results warrant an exploration of eCAPs for use in clinical settings...
February 2015: Antimicrobial Agents and Chemotherapy
Carlos A Rodriguez, Emilios A Papanastasiou, Melanie Juba, Barney Bishop
The rampant spread of antibiotic resistant bacteria has spurred interest in alternative strategies for developing next-generation antibacterial therapies. As such, there has been growing interest in cationic antimicrobial peptides (CAMPs) and their therapeutic applications. Modification of CAMPs via conjugation to auxiliary compounds, including small molecule drugs, is a new approach to developing effective, broad-spectrum antibacterial agents with novel physicochemical properties and versatile antibacterial mechanisms...
2014: Frontiers in Chemistry
Wenbin Zeng, Yue-Lei Chen
Glycopeptides, peptides containing sugar β-amino acids, have significant impact on medicinal chemistry research and pharmaceutical industr. In 1956, the discovery of one classic glycopeptide, vancomycin, broke the dawn of a new age for antibacterial research. Employing glycopeptides for the therapeutic purposes used to be regarded as proposals. Owing largely to the recent improvements in separation practices, characterization techniques, synthetic methods, and biological research, these proposals have been transformed into ongoing research projects in many laboratories around the world...
2014: Protein and Peptide Letters
Jun Zhao, Chao Zhao, Guizhao Liang, Mingzhen Zhang, Jie Zheng
The rapid rise of antibiotic resistance in pathogens becomes a serious and growing threat to medicine and public health. Naturally occurring antimicrobial peptides (AMPs) are an important line of defense in the immune system against invading bacteria and microbial infection. In this work, we present a combined computational and experimental study of the biological activity and membrane interaction of the computationally designed Bac2A-based peptide library. We used the MARTINI coarse-grained molecular dynamics with adaptive biasing force method and the umbrella sampling technique to investigate the translocation of a total of 91 peptides with different amino acid substitutions through a mixed anionic POPE/POPG (3:1) bilayer and a neutral POPC bilayer, which mimic the bacterial inner membrane and the human red blood cell (hRBC) membrane, respectively...
December 23, 2013: Journal of Chemical Information and Modeling
Charlotte C Teneback, Thomas C Scanlon, Matthew J Wargo, Jenna L Bement, Karl E Griswold, Laurie W Leclair
The spread of drug-resistant bacterial pathogens is a growing global concern and has prompted an effort to explore potential adjuvant and alternative therapies derived from nature's repertoire of bactericidal proteins and peptides. In humans, the airway surface liquid layer is a rich source of antibiotics, and lysozyme represents one of the most abundant and effective antimicrobial components of airway secretions. Human lysozyme is active against both Gram-positive and Gram-negative bacteria, acting through several mechanisms, including catalytic degradation of cell wall peptidoglycan and subsequent bacterial lysis...
November 2013: Antimicrobial Agents and Chemotherapy
Rathi Saravanan, Xiang Li, Kaiyang Lim, Harini Mohanram, Li Peng, Biswajit Mishra, Anindya Basu, Jong-Min Lee, Surajit Bhattacharjya, Susanna Su Jan Leong
Antimicrobial peptides (AMPs) kill microbes by non-specific membrane permeabilization, making them ideal templates for designing novel peptide-based antibiotics that can combat multi-drug resistant pathogens. For maximum efficacy in vivo and in vitro, AMPs must be biocompatible, salt-tolerant and possess broad-spectrum antimicrobial activity. These attributes can be obtained by rational design of peptides guided by good understanding of peptide structure-function. Toward this end, this study investigates the influence of charge and hydrophobicity on the activity of tryptophan and arginine rich decamer peptides engineered from a salt resistant human β-defensin-28 variant...
January 2014: Biotechnology and Bioengineering
Li-Li Bai, Wei-Bo Yin, Yu-Hong Chen, Li-Li Niu, Yong-Ru Sun, Shi-Min Zhao, Fu-Quan Yang, Richard R-C Wang, Qing Wu, Xiang-Qi Zhang, Zan-Min Hu
Defensins are small cationic peptides that could be used as the potential substitute for antibiotics. However, there is no efficient method for producing defensins. In this study, we developed a new strategy to produce defensin in nitrate reductase (NR)-deficient C. ellipsoidea (nrm-4). We constructed a plant expression vector carrying mutated NP-1 gene (mNP-1), a mature α-defensin NP-1 gene from rabbit with an additional initiator codon in the 5'-terminus, in which the selection markers were NptII and NR genes...
2013: PloS One
Michael John Dawson, Richard W Scott
Antimicrobial peptides from either microbial sources, or based on host defense peptides (HDPs) from higher organisms, show promising activity against human pathogens. Lantibiotics have been extensively engineered by either molecular biology approaches or chemistry and both natural and modified entities have been shown to have good efficacy in animal models of infection. Amongst HDPs either truncated peptides or non-peptide mimetic molecules show substantial promise both for their direct antibiotic action and also modulation of host functions...
October 2012: Current Opinion in Pharmacology
Sarika, M A Iquebal, Anil Rai
Antimicrobial peptides (AMPs) are the hosts' defense molecules against microbial pathogens and gaining extensive research attention worldwide. These have been reported to play vital role of host innate immunity in response to microbial challenges. AMPs can be used as a natural antibiotic as an alternative of their chemical counterpart for protection of plants/animals against diseases. There are a number of sources of AMPs including prokaryotic and eukaryotic organisms and are present, both in vertebrates and invertebrates...
August 2012: Peptides
Yoonkyung Park, Kyung-Soo Hahm
In a previous study, we reported that truncation of HP (2-20) (derived from the N-terminal region of Helicobacter pylori Ribosomal Protein L1 (RPL1)) at the N- (residues 2-3) and C-terminal (residues 17-20) truncated fragments to give HP (4-16) induces increased antibiotic activity against several bacterial strains without hemolysis. In this study, to develop novel short antibiotic peptides useful as therapeutic drugs, an analogue was designed to possess increased hydrophobicity by Trp substitution in position 2 region of HP (4-16)...
June 1, 2012: Protein and Peptide Letters
Maria Luisa Mangoni, Yechiel Shai
Due to the rapid emergence of resistant microbes to the currently available antibiotics, cationic antimicrobial peptides have attracted considerable interest as a possible new generation of anti-infective compounds. However, low cost development for therapeutic or industrial purposes requires, among other properties, that the peptides will be small and with simple structure. Therefore, considerable research has been devoted to optimizing peptide length combined with a simple design. This review focuses on the similarities and differences in the mode of action and target cell specificity of two families of small peptides: the naturally occurring temporins from the skin of amphibia and the engineered ultrashort lipopeptides...
July 2011: Cellular and Molecular Life Sciences: CMLS
Aparna Anantharaman, Dinkar Sahal
Antimicrobial peptides hold promise against antibiotic resistant pathogens. Here, to find the physicochemical origins of potency and broad spectrum antimicrobial action, we report the structure-activity relationships of synthetic intermediates (peptides A-D) of a potent lysine branched dimeric antibacterial peptide DeltaFd. Our studies show that a tetracationic character in a weak helical fold (peptide C) elicits potent but narrow spectrum antimicrobial activity [Minimum inhibitory concentrations (MICs) E. coli 10 microM, S...
August 26, 2010: Journal of Medicinal Chemistry
A Matejuk, Q Leng, M D Begum, M C Woodle, P Scaria, S-T Chou, A J Mixson
Acquired drug resistance to mycotic infections is rapidly emerging as a major medical problem. Opportunistic fungal infections create therapeutic challenges, particularly in high risk immunocompromised patients with AIDS, cancer, and those undergoing transplantation. Higher mortality and/or morbidity rates due to invasive mycosis have been increasing over the last 20 years, and in light of growing resistance to commonly used antibiotics, novel antifungal drugs and approaches are required. Currently there is considerable interest in antifungal peptides that are ubiquitous in plant and animal kingdoms...
March 2010: Drugs of the Future
Li Na Wang, Bing Yu, Guo Quan Han, Jun He, Dai Wen Chen
Antimicrobial peptides will be attractive and potential candidates as peptide drugs because of their efficient action against microbes and low toxicity to mammal cells. To improve their antibacterial activity, some modifications needs to be made. In this research, the hybrid peptide gene Attacin-Thanatin with 642 bp in length with preferred codons of E. coli was generated using the technology of Gene splicing by overlap extension. The gene was inserted in-frame into E. coli expression plasmid pET-32a (+) and induced to express in E...
October 2010: Molecular Biology Reports
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"