Read by QxMD icon Read

Drosophila border cells

Yu-Chiuan Chang, Jhen-Wei Wu, Yi-Chi Hsieh, Tzu-Han Huang, Zih-Min Liao, Yi-Shan Huang, James A Mondo, Denise Montell, Anna C-C Jang
In collective cell migration, directional protrusions orient cells in response to external cues, which requires coordinated polarity among the migrating cohort. However, the molecular mechanism has not been well defined. Drosophila border cells (BCs) migrate collectively and invade via the confined space between nurse cells, offering an in vivo model to examine how group polarity is organized. Here, we show that the front/back polarity of BCs requires Rap1, hyperactivation of which disrupts cluster polarity and induces misoriented protrusions and loss of asymmetry in the actin network...
February 20, 2018: Cell Reports
Di Kang, Dou Wang, Jianbing Xu, Chao Quan, Xuan Guo, Heng Wang, Jun Luo, Zhongzhou Yang, Shuai Chen, Jiong Chen
Cell growth and cell differentiation are two distinct yet coupled developmental processes, but how they are coordinated is not well understood. During Drosophila oogenesis, we found that the growth-promoting InR/Akt/TOR pathway was involved in suppressing the fate determination of the migratory border cells. The InR/Akt/TOR pathway signals through TOR and Raptor, components of TORC1, to downregulate the JAK/STAT pathway, which is necessary and sufficient for border cell fate determination. TORC1 promotes the protein stability of SOCS36E, the conserved negative regulator of JAK/STAT signaling, through physical interaction, suggesting that TORC1 acts as a key regulator coordinating both cell growth and cell differentiation...
February 26, 2018: Developmental Cell
Qi Wang, Qiu Sun, Daniel M Czajkowsky, Zhifeng Shao
Topologically associating domains (TADs) are fundamental elements of the eukaryotic genomic structure. However, recent studies suggest that the insulating complexes, CTCF/cohesin, present at TAD borders in mammals are absent from those in Drosophila melanogaster, raising the possibility that border elements are not conserved among metazoans. Using in situ Hi-C with sub-kb resolution, here we show that the D. melanogaster genome is almost completely partitioned into >4000 TADs, nearly sevenfold more than previously identified...
January 15, 2018: Nature Communications
Diego I Cattoni, Andrés M Cardozo Gizzi, Mariya Georgieva, Marco Di Stefano, Alessandro Valeri, Delphine Chamousset, Christophe Houbron, Stephanie Déjardin, Jean-Bernard Fiche, Inma González, Jia-Ming Chang, Thomas Sexton, Marc A Marti-Renom, Frédéric Bantignies, Giacomo Cavalli, Marcelo Nollmann
At the kilo- to megabase pair scales, eukaryotic genomes are partitioned into self-interacting modules or topologically associated domains (TADs) that associate to form nuclear compartments. Here, we combine high-content super-resolution microscopies with state-of-the-art DNA-labeling methods to reveal the variability in the multiscale organization of the Drosophila genome. We find that association frequencies within TADs and between TAD borders are below ~10%, independently of TAD size, epigenetic state, or cell type...
November 24, 2017: Nature Communications
Dominik Eder, Konrad Basler, Christof M Aegerter
Mechanical forces play a critical role during embryonic development. Cellular and tissue wide forces direct cell migration, drive tissue morphogenesis and regulate organ growth. Despite the relevance of mechanics for these processes, our knowledge of the dynamics of mechanical forces in living tissues remains scarce. Recent studies have tried to address this problem with the development of tension sensors based on Förster resonance energy transfer (FRET). These sensors are integrated into force bearing proteins and allow the measurement of mechanical tensions on subcellular structures...
October 20, 2017: Scientific Reports
Rebecca Starble, Nancy J Pokrywka
During endocytosis, molecules are internalized by the cell through the invagination of the plasma membrane. Endocytosis is required for proper cell function and for normal development in Drosophila. One component of the endocytic pathway is the retromer complex, which recycles transmembrane proteins to other parts of the cell such as the plasma membrane and the trans-Golgi network. Previous studies have shown that mutations to the retromer complex result in developmental defects in Drosophila. In humans, retromer dysfunction has been implicated in Alzheimer's and Parkinson's disease, but little is known about the role of the retromer complex in Drosophila oogenesis...
October 11, 2017: Mechanisms of Development
Stefanie Ryglewski, Carsten Duch, Benjamin Altenhein
The biogenic amines octopamine (OA) and tyramine (TA) modulate insect motor behavior in an antagonistic manner. OA generally enhances locomotor behaviors such as Drosophila larval crawling and flight, whereas TA decreases locomotor activity. However, the mechanisms and cellular targets of TA modulation of locomotor activity are incompletely understood. This study combines immunocytochemistry, genetics and flight behavioral assays in the Drosophila model system to test the role of a candidate enzyme for TA catabolism, named Nazgul (Naz), in flight motor behavioral control...
2017: Frontiers in Systems Neuroscience
Zsolt Farkas, Luca Fancsalszky, Éva Saskői, Alexandra Gráf, Krisztián Tárnok, Anil Mehta, Krisztina Takács-Vellai
Abnormal regulation of cell migration and altered rearrangement of the cytoskeleton are fundamental properties of metastatic cells. The first identified metastasis suppressor NM23-H1, which displays nucleoside-diphosphate kinase (NDPK) activity is involved in these processes. NM23-H1 inhibits the migratory and invasive potential of some cancer cells. Correspondingly, numerous invasive cancer cell lines (eg, breast, colon, oral, hepatocellular carcinoma, and melanoma) display low endogenous NM23 levels. In this review, we summarize mechanisms, which are linked to the anti-metastatic activity of NM23...
September 18, 2017: Laboratory Investigation; a Journal of Technical Methods and Pathology
Benjamin Richier, Cristina de Miguel Vijandi, Stefanie Mackensen, Iris Salecker
Astrocytes have diverse, remarkably complex shapes in different brain regions. Their branches closely associate with neurons. Despite the importance of this heterogeneous glial cell type for brain development and function, the molecular cues controlling astrocyte branch morphogenesis and positioning during neural circuit assembly remain largely unknown. We found that in the Drosophila visual system, astrocyte-like medulla neuropil glia (mng) variants acquire stereotypic morphologies with columnar and layered branching patterns in a stepwise fashion from mid-metamorphosis onwards...
August 22, 2017: Nature Communications
Ceniz Zihni, Evi Vlassaks, Stephen Terry, Jeremy Carlton, Thomas King Chor Leung, Michael Olson, Franck Pichaud, Maria Susana Balda, Karl Matter
Polarized epithelia develop distinct cell surface domains, with the apical membrane acquiring characteristic morphological features such as microvilli. Cell polarization is driven by polarity determinants including the evolutionarily conserved partitioning-defective (PAR) proteins that are separated into distinct cortical domains. PAR protein segregation is thought to be a consequence of asymmetric actomyosin contractions. The mechanism of activation of apically polarized actomyosin contractility is unknown...
September 2017: Nature Cell Biology
Yongbin Li, Di Zhao, Takeo Horie, Geng Chen, Hongcun Bao, Siyu Chen, Weihong Liu, Ryoko Horie, Tao Liang, Biyu Dong, Qianqian Feng, Qinghua Tao, Xiao Liu
The lateral neural plate border (NPB), the neural part of the vertebrate neural border, is composed of central nervous system (CNS) progenitors and peripheral nervous system (PNS) progenitors. In invertebrates, PNS progenitors are also juxtaposed to the lateral boundary of the CNS. Whether there are conserved molecular mechanisms determining vertebrate and invertebrate lateral neural borders remains unclear. Using single-cell-resolution gene-expression profiling and genetic analysis, we present evidence that orthologs of the NPB specification module specify the invertebrate lateral neural border, which is composed of CNS and PNS progenitors...
August 1, 2017: Proceedings of the National Academy of Sciences of the United States of America
Lathiena Manning, Jinal Sheth, Stacey Bridges, Afsoon Saadin, Kamsi Odinammadu, Deborah Andrew, Susan Spencer, Denise Montell, Michelle Starz-Gaiano
Cell migration is essential during animal development. In the Drosophila ovary, the steroid hormone ecdysone coordinates nutrient sensing, growth, and the timing of morphogenesis events including border cell migration. To identify downstream effectors of ecdysone signaling, we profiled gene expression in wild-type follicle cells compared to cells expressing a dominant negative Ecdysone receptor or its coactivator Taiman. Of approximately 400 genes that showed differences in expression, we validated 16 candidate genes for expression in border and centripetal cells, and demonstrated that seven responded to ectopic ecdysone activation by changing their transcriptional levels...
December 2017: Mechanisms of Development
Young-Kyung Bae, Frank Macabenta, Heather Leigh Curtis, Angelike Stathopoulos
Cell migration is an instrumental process that ensures cells are properly positioned to support the specification of distinct tissue types during development. To provide insight, we used fluorescence activated cell sorting (FACS) to isolate two migrating cell types from the Drosophila embryo: caudal visceral mesoderm (CVM) cells, precursors of longitudinal muscles of the gut, and hemocytes (HCs), the Drosophila equivalent of blood cells. ~350 genes were identified from each of the sorted samples using RNA-seq, and in situ hybridization was used to confirm expression within each cell type or, alternatively, within other interacting, co-sorted cell types...
December 2017: Mechanisms of Development
Adam Cliffe, David P Doupé, HsinHo Sung, Isaac Kok Hwee Lim, Kok Haur Ong, Li Cheng, Weimiao Yu
Understanding the mechanisms of collective cell migration is crucial for cancer metastasis, wound healing and many developmental processes. Imaging a migrating cluster in vivo is feasible, but the quantification of individual cell behaviours remains challenging. We have developed an image analysis toolkit, CCMToolKit, to quantify the Drosophila border cell system. In addition to chaotic motion, previous studies reported that the migrating cells are able to migrate in a highly coordinated pattern. We quantify the rotating and running migration modes in 3D while also observing a range of intermediate behaviours...
April 4, 2017: Nature Communications
Thomas Andreas Gerland, Bo Sun, Pawel Smialowski, Andrea Lukacs, Andreas Walter Thomae, Axel Imhof
Hybrid incompatibility between Drosophila melanogaster and D. simulans is caused by a lethal interaction of the proteins encoded by the Hmr and Lhr genes. In D. melanogaster the loss of HMR results in mitotic defects, an increase in transcription of transposable elements and a deregulation of heterochromatic genes. To better understand the molecular mechanisms that mediate HMR's function, we measured genome-wide localization of HMR in D. melanogaster tissue culture cells by chromatin immunoprecipitation. Interestingly, we find HMR localizing to genomic insulator sites that can be classified into two groups...
2017: PloS One
Olivia Scheffler, Gregory A Ahearn
In animals, the accepted model of carbohydrate digestion and absorption involves reduction of disaccharides into the monosaccharides glucose, fructose, and galactose followed by their individual transmembrane transport into cells. In 2011, a gene for a distinct disaccharide sucrose transporter (SCRT) was found in Drosophila melanogaster and characterized in a yeast expression system. The purpose of the present investigation was to functionally identify and characterize a putative disaccharide transporter analog in the hepatopancreas of the American lobster, Homarus americanus...
May 2017: Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology
In Jun Cha, Jang Ho Lee, Kyoung Sang Cho, Sung Bae Lee
Oogenesis in Drosophila involves very dynamic cellular changes such as cell migration and polarity formation inside an ovary during short period. Previous studies identified a number of membrane-bound receptors directly receiving certain types of extracellular inputs as well as intracellular signalings to be involved in the regulation of these dynamic cellular changes. However, yet our understanding on exactly how these receptor-mediated extracellular inputs lead to dynamic cellular changes remains largely unclear...
March 11, 2017: Biochemical and Biophysical Research Communications
Nathalie Colombié, Valérie Choesmel-Cadamuro, Jennifer Series, Gregory Emery, Xiaobo Wang, Damien Ramel
Collective cell migration is involved in numerous processes both physiological, such as embryonic development, and pathological such as metastasis. Compared to single cell migration, collective motion requires cell behaviour coordination through an as-yet poorly understood but critical cell-cell communication mechanism. Using Drosophila border cell migration, we show here that the small Rho GTPase Cdc42 regulates cell-cell communication. Indeed, we demonstrate that Cdc42 controls protrusion formation in a cell non-autonomous manner...
March 1, 2017: Developmental Biology
Aresh Sahu, Ritabrata Ghosh, Girish Deshpande, Mohit Prasad
Intercellular communication mediated by gap junction (GJ) proteins is indispensable during embryogenesis, tissue regeneration and wound healing. Here we report functional analysis of a gap junction protein, Innexin 2 (Inx2), in cell type specification during Drosophila oogenesis. Our data reveal a novel involvement of Inx2 in the specification of Border Cells (BCs), a migratory cell type, whose identity is determined by the cell autonomous STAT activity. We show that Inx2 influences BC fate specification by modulating STAT activity via Domeless receptor endocytosis...
January 2017: PLoS Genetics
Afsoon Saadin, Michelle Starz-Gaiano
Drosophila border cells undergo a straightforward and stereotypical collective migration during egg development. However, a complex genetic program underlies this process. A variety of approaches, including biochemical, genetic, and imaging strategies have identified many regulatory components, revealing layers of control. This complexity suggests that the active processes of evaluating the environment, remodeling the cytoskeleton, and coordinating movements among cells, demand rapid systems for modulating cell behaviors...
October 2016: Trends in Genetics: TIG
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"