Read by QxMD icon Read

Parp1 dna

Eva Gross, Harm van Tinteren, Zhou Li, Sandra Raab, Christina Meul, Stefanie Avril, Nadja Laddach, Michaela Aubele, Corinna Propping, Apostolos Gkazepis, Manfred Schmitt, Alfons Meindl, Petra M Nederlof, Marion Kiechle, Esther H Lips
BACKGROUND: Triple-negative breast cancer (TNBC) with a BRCA1-like molecular signature has been demonstrated to remarkably respond to platinum-based chemotherapy and might be suited for a future treatment with poly(ADP-ribose)polymerase (PARP) inhibitors. In order to rapidly assess this signature we have previously developed a multiplex-ligation-dependent probe amplification (MLPA)-based assay. Here we present an independent validation of this assay to confirm its important clinical impact...
October 19, 2016: BMC Cancer
Lelin Hu, Hao Wang, Li Huang, Yong Zhao, Junjie Wang
Autophagy induced by radiation is critical to cell fate decision. Evidence now sheds light on the importance of autophagy induced by cancer radiotherapy. Traditional view considers radiation can directly or indirectly damage DNA which can activate DNA damage the repair signaling pathway, a large number of proteins participating in DNA damage repair signaling pathway such as p53, ATM, PARP1, FOXO3a, mTOR and SIRT1 involved in autophagy regulation. However, emerging recent evidence suggests radiation can also cause injury to extranuclear targets such as plasma membrane, mitochondria and endoplasmic reticulum (ER) and induce accumulation of ceramide, ROS, and Ca2+ concentration which activate many signaling pathways to modulate autophagy...
October 5, 2016: International Journal of Oncology
Tereza Vaclová, Nicholas T Woods, Diego Megías, Sergio Gomez-Lopez, Fernando Setién, José María García Bueno, José Antonio Macías, Alicia Barroso, Miguel Urioste, Manel Esteller, Alvaro N A Monteiro, Javier Benítez, Ana Osorio
BRCA1-deficient cells show defects in DNA repair and rely on other members of the DNA repair machinery, which makes them sensitive to PARP inhibitors (PARPi). Although carrying a germline pathogenic variant in BRCA1/2 is the best determinant of response to PARPi, a significant percentage of the patients do not show sensitivity and/or display increased toxicity to the agent. Considering previously suggested mutation-specific BRCA1 haploinsufficiency, we aimed to investigate whether there are any differences in cellular response to PARPi Olaparib depending on the BRCA1 mutation type...
October 13, 2016: Human Molecular Genetics
Jiawei Guan, Qian Zhao, Weifeng Mao
PTEN is a tumor suppressor gene characterized as a phosphatase that antagonizes the phosphatidylinositol 3-kinase signaling pathway in the cytoplasm. Nuclear PTEN plays roles in chromosomal stability, in which the double-strand breaks (DSB) repair mediated by homologous recombination (HR) and non-homologous end joining (NHEJ) is critical. Herein, the role of nuclear PTEN in DSB repair and the underlying molecular mechanism was investigated in this study. Using human breast cancer BT549 and MDA-MB-231 cell lines, we reveal a specific feature of PTEN that controls poly(ADP-ribosyl)ation of Ku70 and interferes with binding of Ku70 at DSB...
October 11, 2016: Biochimica et Biophysica Acta
Hafida Sellou, Théo Lebeaupin, Catherine Chapuis, Rebecca Smith, Anna Hegele, Hari R Singh, Marek Kozlowski, Sebastian Bultmann, Andreas G Ladurner, Gyula Timinszky, Sébastien Huet
Chromatin relaxation is one of the earliest cellular responses to DNA damage. However, what determines these structural changes, including their ATP requirement, is not well understood. Using live-cell imaging and laser microirradiation to induce DNA lesions, we show that the local chromatin relaxation at DNA damage sites is regulated by PARP1 enzymatic activity. We also report that H1 is mobilized at DNA damage sites but, since this mobilization is largely independent of poly(ADP-ribosyl)ation, it cannot solely explain the chromatin relaxation...
October 12, 2016: Molecular Biology of the Cell
Nidal E Muvarak, Khadiza Chowdhury, Limin Xia, Carine Robert, Eun Yong Choi, Yi Cai, Marina Bellani, Ying Zou, Zeba N Singh, Vu H Duong, Tyler Rutherford, Pratik Nagaria, Søren M Bentzen, Michael M Seidman, Maria R Baer, Rena G Lapidus, Stephen B Baylin, Feyruz V Rassool
Poly (ADP-ribose) polymerase inhibitors (PARPis) are clinically effective predominantly for BRCA-mutant tumors. We introduce a mechanism-based strategy to enhance PARPi efficacy based on DNA damage-related binding between DNA methyltransferases (DNMTs) and PARP1. In acute myeloid leukemia (AML) and breast cancer cells, DNMT inhibitors (DNMTis) alone covalently bind DNMTs into DNA and increase PARP1 tightly bound into chromatin. Low doses of DNMTis plus PARPis, versus each drug alone, increase PARPi efficacy, increasing amplitude and retention of PARP1 directly at laser-induced DNA damage sites...
October 10, 2016: Cancer Cell
Vishakha Sharma, Sachchida Nand Pandey, Hunain Khawaja, Kristy J Brown, Yetrib Hathout, Yi-Wen Chen
OBJECTIVE: The goal of the study is to identity proteins, which interact with the promoter region of double homeobox protein 4 (DUX4) gene known to be causative for the autosomal dominant disorder Facioscapulohumeral Muscular Dystrophy (FSHD). METHODS: We performed a DNA pull down assay coupled with mass spectrometry analysis to identify proteins that interact with a DUX4 promoter probe in Rhabdomyosarcomca (RD) cells. We selected the top ranked protein poly (ADP-ribose) polymerase 1 (PARP1) from our mass spectrometry data for further ChIP-qPCR validation using patients' myoblasts...
August 2016: Journal of Genetic Syndrome & Gene Therapy
Małgorzata Czyż, Monika Toma, Anna Gajos-Michniewicz, Kinga Majchrzak, Grazyna Hoser, Janusz Szemraj, Margaret Nieborowska-Skorska, Phil Cheng, Daniel Gritsyuk, Mitchell Levesque, Reinhard Dummer, Tomasz Sliwinski, Tomasz Skorski
Cancer including melanoma may be ''addicted" to double strand break (DSB) repair and targeting this process could sensitize them to the lethal effect of DNA damage. PARP1 exerts an important impact on DSB repair as it binds to both single- and double- strand breaks. PARP1 inhibitors might be highly effective drugs triggering synthetic lethality in patients whose tumors have germline or somatic defects in DNA repair genes. We hypothesized that PARP1-dependent synthetic lethality could be induced in melanoma cells displaying downregulation of DSB repair genes...
September 27, 2016: Oncotarget
Robert Fred Henry Walter, Claudia Vollbrecht, Robert Werner, Thomas Mairinger, Jan Schmeller, Elena Flom, Jeremias Wohlschlaeger, Nikolaos Barbetakis, Dimitrios Paliouras, Fotios Chatzinikolaou, Vasilis Adamidis, Kosmas Tsakiridis, Paul Zarogoulidis, Georgia Trakada, Daniel Christian Christoph, Kurt Werner Schmid, Fabian Dominik Mairinger
BACKGROUND: Malignant pleural mesothelioma (MPM) is a rare, predominantly asbestos-related and biologically highly aggressive tumour leading to a dismal prognosis. Multimodality therapy consisting of platinum-based chemotherapy is the treatment of choice. The reasons for the rather poor efficacy of platinum compounds remain largely unknown. MATERIAL AND METHODS: For this exploratory mRNA study, 24 FFPE tumour specimens were screened by digital gene expression analysis...
2016: Journal of Cancer
Lisa Rank, Sebastian Veith, Eva C Gwosch, Janine Demgenski, Magdalena Ganz, Marjolijn C Jongmans, Christopher Vogel, Arthur Fischbach, Stefanie Buerger, Jan M F Fischer, Tabea Zubel, Anna Stier, Christina Renner, Michael Schmalz, Sascha Beneke, Marcus Groettrup, Roland P Kuiper, Alexander Bürkle, Elisa Ferrando-May, Aswin Mangerich
Genotoxic stress activates PARP1, resulting in the post-translational modification of proteins with poly(ADP-ribose) (PAR). We genetically deleted PARP1 in one of the most widely used human cell systems, i.e. HeLa cells, via TALEN-mediated gene targeting. After comprehensive characterization of these cells during genotoxic stress, we analyzed structure-function relationships of PARP1 by reconstituting PARP1 KO cells with a series of PARP1 variants. Firstly, we verified that the PARP1\E988K mutant exhibits mono-ADP-ribosylation activity and we demonstrate that the PARP1\L713F mutant is constitutively active in cells...
September 29, 2016: Nucleic Acids Research
Ala Abdelali, Maie Al-Bader, Narayana Kilarkaje
Diabetes induces oxidative stress, DNA damage and alters several intracellular signaling pathways in organ systems. This study investigated modulatory effects of Trans-Resveratrol on type 1 diabetes mellitus (T1DM)-induced abnormal spermatogenesis, DNA damage and alterations in poly (ADP-ribose) polymerase (PARP) signaling in rat testis. Trans-Resveratrol administration (5mg/kg/day, ip) to Streptozotocin-induced T1DM adult male Wistar rats from day 22-42 resulted in recovery of induced oxidative stress, abnormal spermatogenesis and inhibited DNA synthesis, and led to mitigation of 8-hydroxy-2'-deoxyguanosine formation in the testis and spermatozoa, and DNA double-strand breaks in the testis...
September 27, 2016: Toxicology and Applied Pharmacology
Kavitha Balaji, Smruthi Vijayaraghavan, Lixia Diao, Pan Tong, Youhong Fan, Jason Pw Carey, Tuyen N Bui, Steven Warner, John V Heymach, Kelly K Hunt, Jing Wang, Lauren Averett Byers, Khandan Keyomarsi
: Epithelial to mesenchymal transition (EMT) is associated with a wide range of changes in cancer cells, including stemness, chemo- and radio-resistance and metastasis. The mechanistic role of upstream mediators of EMT has not yet been well characterized. Recently, we showed that non-small cell lung cancers (NSCLCs) that have undergone EMT overexpress AXL, a receptor tyrosine kinase. AXL is also overexpressed in a subset of triple-negative breast cancers (TNBCs) and head and neck squamous cell carcinomas (HNSCCs) and its overexpression has been associated with more aggressive tumor behavior and linked to resistance to chemotherapy, radiation, and targeted therapy...
September 26, 2016: Molecular Cancer Research: MCR
K Martin-Hernandez, J-M Rodriguez-Vargas, V Schreiber, F Dantzer
Cell response to genotoxic stress requires a complex network of sensors and effectors from numerous signaling and repair pathways, among them the nuclear poly(ADP-ribose) polymerase 1 (PARP1) plays a central role. PARP1 is catalytically activated in the setting of DNA breaks. It uses NAD(+) as a donor and catalyses the synthesis and subsequent covalent attachment of branched ADP-ribose polymers onto itself and various acceptor proteins to promote repair. Its inhibition is now considered as an efficient therapeutic strategy to potentiate the cytotoxic effect of chemotherapy and radiation or to exploit synthetic lethality in tumours with defective homologous recombination mediated repair...
September 23, 2016: Seminars in Cell & Developmental Biology
S N Khodyreva, O I Lavrik
Poly(ADP-ribosyl)ation (PARylation) of proteins is one of the immediate cell responses to DNA damage and is catalyzed by poly(ADP-ribose) polymerases (PARPs). When bound to damaged DNA, some members of the PARP family are activated and use NAD^(+) as a source of ADP to catalyze synthesis of poly(ADP-ribose) (PAR) covalently attached to a target protein. PAR synthesis is considered as a mechanism that provides a local signal of DNA damage and modulates protein functions in response to genotoxic agents. PARP1 is the best-studied protein of the PARP family and is widely known аs a regulator of repair of damaged bases and single-strand nicks...
July 2016: Molekuliarnaia Biologiia
Harald Schuhwerk, Reham Atteya, Kanstantsin Siniuk, Zhao-Qi Wang
Despite more than 50 years of research, the vast majority of the biology of poly(ADP-ribosyl)ation (PARylation) still remains a gross mystery. Originally described to be a part of the DNA repair machinery, poly(ADP-ribose) (PAR) is synthesized immediately by poly(ADP-ribose) polymerases (PARPs, also known as ARTDs) upon DNA damage and then rapidly removed by degrading enzymes. PAR provides a delicate and spatiotemporal interaction scaffold for numerous target proteins. Thus, the multifaceted PARylation system, consisting of PAR itself and its synthesizers and erasers, plays diverse roles in the DNA damage response (DDR), in DNA repair, transcription, replication, chromatin remodelling, metabolism and cell death...
September 21, 2016: Seminars in Cell & Developmental Biology
Sukumaran Anil, P B Gopikrishnan, Ashik Bin Basheer, B G Vidyullatha, Yahya A Alogaibi, Elna P Chalisserry, Fawad Javed, M Hn Dalati, Sajith Vellappally, Mohamed Ibrahim Hashem, Darshan Devang Divakar
BACKGROUND: Oral cancers account for approximately 2% of all cancers diagnosed each year; however, the vast majority (80%) of the affected individuals are smokers whose risk of developing a lesion is five to nine times greater than that of non-smokers. Tobacco smoke contains numerous carcinogens that cause DNA damage, including oxidative lesions that are removed effectively by the base-excision repair (BER) pathway, in which poly (ADP-ribose) polymerase 1 (PARP-1), plays key roles. Genetic variations in the genes encoding DNA repair enzymes may alter their functions...
2016: Asian Pacific Journal of Cancer Prevention: APJCP
Kyoung Min Kim, Young Jae Moon, See-Hyoung Park, Hye Jeong Park, Sung Il Wang, Ho Sung Park, Ho Lee, Keun Sang Kwon, Woo Sung Moon, Dong Geun Lee, Jung Ryul Kim, Kyu Yun Jang
DNA damage response (DDR) molecules are protective against genotoxic stresses. DDR molecules are also involved in the survival of cancer cells in patients undergoing anti-cancer therapies. Therefore, DDR molecules are potential markers of cancer progression in addition to being potential therapeutic targets. In this study, we evaluated the immunohistochemical expression of PARP1, γH2AX, BRCA1, and BRCA2 and their prognostic significance in 112 cases of soft tissue sarcoma (STS). The expression of PARP1, γH2AX, BRCA1, and BRCA2 were significantly associated with each other and were associated with higher tumor stage and presence of distant metastasis...
2016: PloS One
Anirban Roychowdhury, Sudip Samadder, Pijush Das, Sapan Mandloi, Sankar Addya, Chandraditya Chakraborty, Partha Sarathi Basu, Ranajit Mondal, Anup Roy, Saikat Chakrabarti, Susanta Roychoudhury, Chinmay Kumar Panda
BACKGROUND: CSCC is one of the most common cancer affecting women globally. Though it is caused by the infection of hrHPV but long latency period for malignant outcome in only a subset of hrHPV infected women indicates involvement of additional alterations, primarily CNVs. Here, we showed how CNVs played a crucial role in development of advanced tumors (stage III/IV) in Indian patients. METHODS: Initially, high-resolution CGH-SNP microarray analysis pointed out frequent CNVs followed by significantly altered genes...
September 15, 2016: Biochimica et Biophysica Acta
Xin Sun, Kai Fu, Andrea Hodgson, Eric M Wier, Matthew G Wen, Olena Kamenyeva, Xue Xia, Lily Y Koo, Fengyi Wan
The rapid and robust synthesis of polymers of adenosine diphosphate (ADP)-ribose (PAR) chains, primarily catalyzed by poly(ADP-ribose) polymerase 1 (PARP1), is crucial for cellular responses to DNA damage. However, the precise mechanisms through which PARP1 is activated and PAR is robustly synthesized are not fully understood. Here, we identified Src-associated substrate during mitosis of 68 kDa (Sam68) as a novel signaling molecule in DNA damage responses (DDRs). In the absence of Sam68, DNA damage-triggered PAR production and PAR-dependent DNA repair signaling were dramatically diminished...
September 2016: PLoS Biology
Mariam M AlHilli, Marc A Becker, S John Weroha, Karen S Flatten, Rachel M Hurley, Maria I Harrell, Ann L Oberg, Matt J Maurer, Kieran M Hawthorne, Xiaonan Hou, Sean C Harrington, Sarah McKinstry, X Wei Meng, Keith M Wilcoxen, Kimberly R Kalli, Elizabeth M Swisher, Scott H Kaufmann, Paul Haluska
OBJECTIVE: Poly(ADP-ribose) polymerase (PARP) inhibitors have yielded encouraging responses in high-grade serous ovarian carcinomas (HGSOCs), but the optimal treatment setting remains unknown. We assessed the effect of niraparib on HGSOC patient-derived xenograft (PDX) models as well as the relationship between certain markers of homologous recombination (HR) status, including BRCA1/2 mutations and formation of RAD51 foci after DNA damage, and response of these PDXs to niraparib in vivo...
September 7, 2016: Gynecologic Oncology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"