Read by QxMD icon Read

Organ size gene plant

Xianbo Liu, Xiangjin Wei, Zhonghua Sheng, Guiai Jiao, Shaoqing Tang, Ju Luo, Peisong Hu
Polycomb group (PcG) proteins have been shown to affect growth and development in plants. To further elucidate their role in these processes in rice, we isolated and characterized a rice mutant which exhibits dwarfism, reduced seed setting rate, defective floral organ, and small grains. Map-based cloning revealed that abnormal phenotypes were attributed to a mutation of the Fertilization Independent Endosperm 2 (OsFIE2) protein, which belongs to the PcG protein family. So we named the mutant as osfie2-1. Histological analysis revealed that the number of longitudinal cells in the internodes decreased in osfie2-1, and that lateral cell layer of the internodes was markedly thinner than wild-type...
2016: PloS One
Wanlong Li, Ghana S Challa, Huilan Zhu, Wenjie Wei
Chromosomal rearrangements (CRs) play important roles in karyotype diversity and speciation. While many CR breakpoints have been characterized at the sequence level in yeast, insects and primates, little is known about the structure of evolutionary CR breakpoints in plant genomes, which are much more dynamic in genome size and sequence organization. Here, we report identification of breakpoints of a translocation between chromosome arms 4L and 5L of Triticeae, which is fixed in several species including diploid wheat and rye, by comparative mapping and comparative analysis of the draft genome and chromosome survey sequences of the Triticeae species...
October 11, 2016: G3: Genes—Genomes—Genetics
Nete Kodahl, Renate Müller, Henrik Lütken
Plant transformation with the wild type Ri plasmid T-DNA of Agrobacterium rhizogenes is a promising method for breeding of compact plants and has been the subject of numerous studies. However, knowledge concerning the isolated functions of single genes and ORFs from the plasmid is limited. The rolB and ORF13 oncogenes of A. rhizogenes show considerable promise in plant breeding, but have not been comprehensively studied. Detailed information regarding the morphological impact of specific genes of the Ri plasmid will allow for optimized targeted breeding of plants transformed with the wild type Ri plasmid T-DNA...
November 2016: Plant Science: An International Journal of Experimental Plant Biology
Kalpana Nanjareddy, Lourdes Blanco, Manoj Kumar Arthikala, Xochitl Alvarado-Affantranger, Carmen Quinto, Federico Sanchez, Miguel Lara
The target of rapamycin (TOR) protein kinase regulates metabolism, growth and life span in yeast, animals and plants in coordination with nutrient status and environmental conditions. The nutrient-dependent nature of TOR functionality makes this kinase a putative regulator of symbiotic associations involving nutrient acquisition. However, TOR's role in these processes remains to be understood. Here, we uncovered the role of TOR during the Phaseolus vulgaris-Rhizobium symbiotic interaction. TOR was expressed in all tested Phaseolus tissues, with higher expression levels in the root meristems and senesced nodules...
October 3, 2016: Plant Physiology
Khadiza Khatun, Arif Hasan Khan Robin, Jong-In Park, Chang Kil Kim, Ki-Byung Lim, Min-Bae Kim, Do-Jin Lee, Ill Sup Nou, Mi-Young Chung
The actin depolymerizing factor (ADF) proteins have growth, development, defense-related and growth regulatory functions in plants. The present study used genome-wide analysis to investigate ADF family genes in tomato. Eleven tomato ADF genes were identified and differential expression patterns were found in different organs. SlADF6 was preferentially expressed in roots, suggesting its function in root development. SlADF1, SlADF3 and SlADF10 were predominately expressed in the flowers compared to the other organs and specifically in the stamen compared to other flower parts, indicating their potential roles in pollen development...
2016: Genes
Bruna Marques Dos Santos, Tiago Santana Balbuena
: Photosynthetic organisms may be drastically affected by the future climate projections of a considerable increase in CO2 concentrations. Growth under a high concentration of CO2 could stimulate carbon assimilation-especially in C3-type plants. We used a proteomics approach to test the hypothesis of an increase in the abundance of the enzymes involved in carbon assimilation in Eucalyptus urophylla plants grown under conditions of high atmospheric CO2. Our strategy allowed the profiling of all Calvin-Benson cycle enzymes and associated protein species...
September 24, 2016: Journal of Proteomics
Takuma Shigeyama, Asuka Watanabe, Konatsu Tokuchi, Shigeo Toh, Naoki Sakurai, Naoto Shibuya, Naoto Kawakami
Regulation and maintenance of cell wall physical properties are crucial for plant growth and environmental response. In the germination process, hypocotyl cell expansion and endosperm weakening are prerequisites for dicot seeds to complete germination. We have identified the Arabidopsis mutant thermoinhibition-resistant germination 1 (trg1), which has reduced seed dormancy and insensitivity to unfavourable conditions for germination owing to a loss-of-function mutation of TRG1/XYL1, which encodes an α-xylosidase...
October 2016: Journal of Experimental Botany
Xiaodong Ma, Jianchao Ma, Di Fan, Chaofeng Li, Yuanzhong Jiang, Keming Luo
Higher plants have been shown to experience a juvenile vegetative phase, an adult vegetative phase, and a reproductive phase during its postembryonic development and distinct lateral organ morphologies have been observed at the different development stages. Populus euphratica, commonly known as a desert poplar, has developed heteromorphic leaves during its development. The TCP family genes encode a group of plant-specific transcription factors involved in several aspects of plant development. In particular, TCPs have been shown to influence leaf size and shape in many herbaceous plants...
2016: Scientific Reports
Han Han, Beth A Krizek
Expression differences underlie the functional differences between two related transcription factors: AINTEGUMENTA and AINTEGUMENTA-LIKE6. Ectopic expression of AINTEGUMENTA-LIKE6 at high levels alters floral organ initiation, growth and identity specification. AINTEGUMENTA (ANT) and AINTEGUMENTA-LIKE6 (AIL6) encode related transcription factors with partially overlapping roles in floral organ development in Arabidopsis thaliana. To investigate whether the functional differences between ANT and AIL6 are a consequence of differences in gene expression and/or protein activity, we made transgenic plants in which a genomic copy of AIL6 was expressed under the control of the ANT promoter...
September 7, 2016: Plant Molecular Biology
Ophélie Jouffroy, Surya Saha, Lukas Mueller, Hadi Quesneville, Florian Maumus
BACKGROUND: Plant genomes are populated by different types of repetitive elements including transposable elements (TEs) and simple sequence repeats (SSRs) that can have a strong impact on genome size and dynamic as well as on the regulation of gene transcription. At least two-thirds of the tomato genome is composed of repeats. While their bulk impact on genome organization has been recently revealed by whole genome assembly, their influence on tomato biology and phenotype remains largely unaddressed...
2016: BMC Genomics
Xiao Liu, Ling-Xia Guo, Long-Fei Jin, Yong-Zhong Liu, Tao Liu, Yu-Hua Fan, Shu-Ang Peng
Growth-regulating factor (GRF) is an important protein in GA-mediated response, with key roles in plant growth and development. However, it is not known whether or how the GRF proteins in citrus to regulate organ size. In this study, nine citrus GRF genes (CsGRF1-9) were validated from the 'Anliu' sweet orange (AL, Citrus sinensis cv. Anliu) by PCR amplification. They all contain two conserved motifs (QLQ and WRC) and have 3-4 exons. The transcript levels of genes were detected by qRT-PCR. Transcript analysis showed that (1) CsGRF 1, 2, 5, 6, 7, and 9 expressed predominantly in young leaf, CsGRF 3 and 4 expressed predominantly in fruit immature juice sacs and CsGRF 8 expressed predominantly in root; (2) all citrus GRF genes had significantly higher expression in young leaves than mature leaf; (3) in juice sacs, the transcript levels of CsGRF1, 4, 5, 6, and 8 increased significantly while the transcript levels of CsGRF2, 3, 7, and 9 had no significant change from 80 DAF to 100 DAF...
October 2016: Molecular Biology Reports
Bingbing Cai, Qiang Li, Yongchao Xu, Long Yang, Huangai Bi, Xizhen Ai
Fructose 1,6-bisphosphate aldolase (FBA) is a key enzyme in plants that is involved in glycolysis, gluconeogenesis, and the Calvin cycle. FBA genes play significant roles in biotic and abiotic stress responses and also regulate growth and development. Despite the importance of FBA genes, little is known about it in tomato. In this study, we identified 8 FBA genes in tomato and classified them into 2 subgroups based on a phylogenetic tree, gene structures, and conserved motifs. Five (SlFBA1, 2, 3, 4 and 5) and three (SlFBA6, 7, and 8) SlFBA proteins were predicted to be localized in chloroplasts and cytoplasm, respectively...
July 19, 2016: Plant Physiology and Biochemistry: PPB
Karla V García-Cruz, Berenice García-Ponce, Adriana Garay-Arroyo, María De La Paz Sanchez, Yamel Ugartechea-Chirino, Bénédicte Desvoyes, Mario A Pacheco-Escobedo, Rosalinda Tapia-López, Ivan Ransom-Rodríguez, Crisanto Gutierrez, Elena R Alvarez-Buylla
BACKGROUND: Morphogenesis depends on the concerted modulation of cell proliferation and differentiation. Such modulation is dynamically adjusted in response to various external and internal signals via complex transcriptional regulatory networks that mediate between such signals and regulation of cell-cycle and cellular responses (proliferation, growth, differentiation). In plants, which are sessile, the proliferation/differentiation balance is plastically adjusted during their life cycle and transcriptional networks are important in this process...
July 29, 2016: Annals of Botany
Rafaqat A Gill, Na Zhang, Basharat Ali, Muhammad A Farooq, Jianxiang Xu, Muhammad B Gill, Bizeng Mao, Weijun Zhou
Salicylic acid (SA) mediates tolerance mechanisms in plants against a wide spectrum of biotic and abiotic stresses. Therefore, the present study was carried out to determine how SA regulates the plant protection mechanisms in two cultivars of oilseed rape (Brassica napus L.) under chromium (Cr) stress. Exogenously applied SA enhanced plant growth, increased dry biomasses, and strengthened the reactive oxygen scavenging system by improving cell organelles that were severely damaged via Cr toxicity. The contents of Cr were significantly enhanced in both root and leaf of cultivar Zheda 622 (yellow color) compared with cultivar ZS 758 (black color)...
July 26, 2016: Environmental Science and Pollution Research International
Veronique Brulé, Ahmad Rafsanjani, Damiano Pasini, Tamara L Western
Plants must meet mechanical as well as physiological and reproductive requirements for survival. Management of internal and external stresses is achieved through their unique hierarchical architecture. Stiffness is determined by a combination of morphological (geometrical) and compositional variables that vary across multiple length scales ranging from the whole plant to organ, tissue, cell and cell wall levels. These parameters include, among others, organ diameter, tissue organization, cell size, density and turgor pressure, and the thickness and composition of cell walls...
September 2016: Plant Science: An International Journal of Experimental Plant Biology
Aino Kalske, Roosa Leimu, J F Scheepens, Pia Mutikainen
Local adaptation of interacting species to one another indicates geographically variable reciprocal selection. This process of adaptation is central in the organization and maintenance of genetic variation across populations. Given that the strength of selection and responses to it often vary in time and space, the strength of local adaptation should in theory vary between generations and among populations. However, such spatiotemporal variation has rarely been explicitly demonstrated in nature and local adaptation is commonly considered to be relatively static...
September 2016: Evolution; International Journal of Organic Evolution
Adam Rajsz, Anna Warzybok, Magdalena Migocka
Full-size members of the ABCG (ATP-binding cassette, subfamily G) subfamily of ABC transporters have been found only in plants and fungi. The plant genes encoding full-size ABCGs identified so far appeared to be differentially regulated under various environmental constraints, plant growth regulators, and microbial elicitors, indicating a broad functional role of these proteins in plant responses to abiotic and biotic stress. Nevertheless, the structure and physiological function of full-size ABCGs in many plant species are still unknown...
2016: Plant Molecular Biology Reporter
Lianghong Ni, Zhili Zhao, Hongxi Xu, Shilin Chen, Gaawe Dorje
The genus Gentiana is the largest in the Gentianaceae family with ca. 400 species. However, with most species growing on the Qinghai-Tibet plateau, the processes of adaptive evolution and speciation within the genus is not clear. Also, the genomic analyses could provide important information. So far, the complete chloroplast (cp) genome data of the genus are still deficient. As the second and third sequenced members within Gentianaceae, we report the construction of complete cp sequences of Gentiana robusta King ex Hook...
July 15, 2016: Current Genetics
Agnieszka Grinn-Gofroń, Magdalena Sadyś, Joanna Kaczmarek, Aleksandra Bednarz, Sylwia Pawłowska, Malgorzata Jedryczka
Recent advances in molecular detection of living organisms facilitate the introduction of novel methods to studies of the transport of fungal spores over large distances. Monitoring the migration of airborne fungi using microscope based spore identification is limited when different species produce very similar spores. In our study, DNA-based monitoring with the use of species-specific probes allowed us to track the aerial movements of two important fungal pathogens of oilseed rape (Brassica napus L.), i.e...
November 15, 2016: Science of the Total Environment
Qiaoxia Li, Qingdi Huo, Juan Wang, Jing Zhao, Kun Sun, Chaoying He
BACKGROUND: Some plants develop a breeding system that produces both chasmogamous (CH) and cleistogamous (CL) flowers. However, the underlying molecular mechanism remains elusive. RESULTS: In the present study, we observed that Viola philippica develops CH flowers with short daylight, whereas an extended photoperiod induces the formation of intermediate CL and CL flowers. In response to long daylight, the respective number and size of petals and stamens was lower and smaller than those of normally developed CH flowers, and a minimum of 14-h light induced complete CL flowers that had no petals but developed two stamens of reduced fertility...
2016: BMC Plant Biology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"