Read by QxMD icon Read

Organ size gene plant

M A Filyushin, M A Slugin, E A Dzhos, E Z Kochieva, A V Shchennikova
The interspecific polymorphism and the expression patterns of the genes encoding the YABBY1 and YABBY3 transcription factors of cultivated tomato Solanum lycopersicum and wild species S. chmielewskii, S. peruvianum, and S. habrochaites are characterized. The possibility of an inverse relationship between the level of YABBY1 and YABBY3 genes coexpression and the size of leaves and flowers of the tomato species studied is shown. The phylogeny of the genes suggests an earlier emergence of YABBY1 compared to YABBY3 as well as the origin of these paralogs from a common ancestor before the divergence of dicotyledonous plants into Rosids and Asterids...
January 2018: Doklady. Biochemistry and Biophysics
Sung Don Lim, Won Cheol Yim, Degao Liu, Rongbin Hu, Xiaohan Yang, John C Cushman
Strategies for improving plant size are critical targets for plant biotechnology to increase vegetative biomass or reproductive yield. To improve biomass production, a codon-optimized helix-loop-helix transcription factor (VvCEB1opt ) from wine grape was overexpressed in Arabidopsis thaliana resulting in significantly increased leaf number, leaf and rosette area, fresh weight, and dry weight. Cell size, but typically not cell number, was increased in all tissues resulting in increased vegetative biomass and reproductive organ size, number, and seed yield...
March 9, 2018: Plant Biotechnology Journal
Fernanda P Cid, Fumito Maruyama, Kazunori Murase, Steffen P Graether, Giovanni Larama, Leon A Bravo, Milko A Jorquera
Genome analyses are being used to characterize plant growth-promoting (PGP) bacteria living in different plant compartiments. In this context, we have recently isolated bacteria from the phyllosphere of an Antarctic plant (Deschampsia antarctica) showing ice recrystallization inhibition (IRI), an activity related to the presence of antifreeze proteins (AFPs). In this study, the draft genomes of six phyllospheric bacteria showing IRI activity were sequenced and annotated according to their functional gene categories...
February 28, 2018: Extremophiles: Life Under Extreme Conditions
Jagdeep Kaur, Swarup Roy Choudhury, Anitha Vijayakumar, Laryssa Hovis, Zach Rhodes, Rob Polzin, Dylan Blumenthal, Sona Pandey
Heterotrimeric G-proteins are key regulators of a multitude of growth and development pathways in eukaryotes. Along with the conserved G-protein components found in all organisms, plants have certain novel variants with unique architecture, which may be involved in the regulation of plant-specific traits. The higher plant-specific type III (or Class C) Gγ protein, which possesses a large C terminal extension, represented by AGG3 in Arabidopsis, is one such variant of canonical Gγ proteins. The type III Gγ proteins are involved in regulation of many agronomically important traits in plants, including seed yield, organ size regulation, abscisic acid (ABA)-dependent signaling and stress responses, and nitrogen use efficiency...
2018: Frontiers in Plant Science
Laura L Lee, Sara E Blumer-Schuette, Javier A Izquierdo, Jeffrey V Zurawski, Andrew J Loder, Jonathan M Conway, James G Elkins, Mircea Podar, Alicia Clum, Piet C Jones, Marek J Piatek, Deborah A Weighill, Daniel A Jacobson, Michael W W Adams, Robert M Kelly
Metagenomic data from Obsidian Pool (Yellowstone National Park, USA) and thirteen genome sequences were used to re-assess genus-wide biodiversity for the extremely thermophilic Caldicellulosiruptor The updated core-genome contains 1,401 ortholog groups (average genome size for thirteen species = 2,516 genes). The pan-genome, which remains open with a revised total of 3,493 ortholog groups, encodes a variety of multi-domain glycoside hydrolases (GH). These include three cellulases with GH48 domains that are co-located in the Glucan Degradation Locus (GDL) and are specific determinants for microcrystalline cellulose utilization...
February 23, 2018: Applied and Environmental Microbiology
Ming-Li Wu, Qing Li, Jiang Xu, Xi-Wen Li
Background: Amomum compactum is one of the basic species of the traditional herbal medicine amomi fructus rotundus, with great pharmacology effect. The system position of A. compactum is not clear yet, and the introduction of this plant has been hindered by many plant diseases. However, the correlational molecular studies are relatively scarce. Methods: The total chloroplast (cp) DNA was extracted according to previous studies, and then sequenced by 454 GS FLX Titanium platform...
2018: Chinese Medicine
Xuelin Wang, Feng Cheng, Dekai Rohlsen, Changwei Bi, Chunyan Wang, Yiqing Xu, Suyun Wei, Qiaolin Ye, Tongming Yin, Ning Ye
Although organellar genomes (including chloroplast and mitochondrial genomes) are smaller than nuclear genomes in size and gene number, organellar genomes are very important for the investigation of plant evolution and molecular ecology mechanisms. Few studies have focused on the organellar genomes of horticultural plants. Approximately 1193 chloroplast genomes and 199 mitochondrial genomes of land plants are available in the National Center for Biotechnology Information (NCBI), of which only 39 are from horticultural plants...
2018: Horticulture Research
Daniel C Frailey, Srinivasa R Chaluvadi, Justin N Vaughn, Caroline G Coatney, Jeffrey L Bennetzen
BACKGROUND: The chloroplast genomes (plastome) of most plants are highly conserved in structure, gene content, and gene order. Parasitic plants, including those that are fully photosynthetic, often contain plastome rearrangements. These most notably include gene deletions that result in a smaller plastome size. The nature of gene loss and genome structural rearrangement has been investigated in several parasitic plants, but their timing and contributions to the adaptation of these parasites requires further investigation, especially among the under-studied hemi-parasites...
February 6, 2018: BMC Plant Biology
Daniel R Gallie
The initiation of protein synthesis requires the involvement of the eukaryotic translation initiation factor (eIF) 4G to promote assembly of the factors needed to recruit a 40S ribosomal subunit to an mRNA. Although many eukaryotes express two eIF4G isoforms that are highly similar, those in plants, referred to as eIF4G and eIFiso4G, are highly divergent in size, sequence, and domain organization. Species of the Brassicaceae and the Cleomaceae also express a divergent eIFiso4G isoform, referred to as eIFiso4G2, not found elsewhere in the plant kingdom...
2018: PloS One
Nan Li, Han Wu, Qiangqiang Ding, Huihui Li, Zhifei Li, Jing Ding, Yi Li
Anthocyanins are naturally occurring secondary metabolites, responsible for the color of many plants. The Arabidopsis thaliana MYB90/PAP2 (production of anthocyanin pigment 2) was introduced into tomato to study its effect on anthocyanin accumulation. The transgenic tomato displayed much greater anthocyanin accumulation than wild type in all plant organs, but the organs were not fully purple in color except for the stamen. The expression of anthocyanin biosynthetic genes and an anthocyanin-related basic helix-loop-helix (bHLH) gene SlAN1 was significantly increased in the transgenic line, suggesting that ectopic expression of AtPAP2 increases the expression of anthocyanin-related structural and regulatory genes to enhance anthocyanin content...
January 26, 2018: Functional & Integrative Genomics
Rebecca A Chong, Nancy A Moran
Symbiotic interactions between organisms create new ecological niches. For example, many insects survive on plant-sap with the aid of maternally transmitted bacterial symbionts that provision essential nutrients lacking in this diet. Symbiotic partners often enter a long-term relationship in which the co-evolutionary fate of lineages is interdependent. Obligate symbionts that are strictly maternally transmitted experience genetic drift and genome degradation, compromising symbiont function and reducing host fitness unless hosts can compensate for these deficits...
January 23, 2018: ISME Journal
Ángel García-Gutiérrez, Francisco M Cánovas, Concepción Ávila
BACKGROUND: Plants synthesize glutamate from ammonium by the combined activity of the enzymes glutamine synthetase (GS) and glutamate synthase (GOGAT) through the glutamate synthase cycle. In plants, there are two forms of glutamate synthases that differ in their electron donors, NADH-GOGAT (EC and Fd-GOGAT (EC, which have differential roles either in primary ammonia assimilation or in the reassimilation of ammonium from different catabolic processes. Glutamate synthases are complex iron-sulfur flavoproteins containing functional domains involved in the control and coordination of their catalytic activities in annual plants...
January 19, 2018: BMC Genomics
Hirokazu Tsukaya
How mycoheterotrophs have evolved and how they are sustained are an enigma. Structural analyses of the plastid genome and phylogenetic analyses of mycoheterotrophs have been used to identify mycorrhizal fungi. Molecular genetic studies have also revealed the mechanism for plant-fungi interactions. However, the evolution of the small, scale-like vegetative leaves of mycoheterotrophs is unknown. As almost all genes determining leaf size affect the floral organ sizes, it is highly implausible that loss-of-function mutations in leaf size regulators caused the evolution of smaller foliage leaves in mycoheterotrophs...
January 14, 2018: New Phytologist
Domingo Jiménez-López, Laura Aguilar-Henonin, Juan Manuel González-Prieto, Victor Aguilar-Hernández, Plinio Guzmán
RING ubiquitin E3 ligases enclose a RING domain for ubiquitin ligase activity and associated domains and/or conserved motifs outside the RING domain that collectively facilitate their classification and usually reveal some of key information related to mechanism of action. Here we describe a new family of E3 ligases that encodes a RING-H2 domain related in sequence to the ATL and BTL RING-H2 domains. This family, named CTL, encodes a motif designed as YEELL that expands 21 amino acids next to the RING-H2 domain that is present across most eukaryotic lineages...
2018: PloS One
Peng Wu, Wenli Wang, Ying Li, Xilin Hou
Mitogen-activated protein kinase (MAPK) cascade signal transduction modules play crucial roles in regulating many biological processes in plants. These cascades are composed of three classes of hierarchically organized protein kinases, MAPKKKs, MAPKKs and MAPKs. Here, we analyzed gene retention, phylogenetic, evolution and expression patterns of MAPK cascade genes in Brassica rapa. We further found that the MAPK branches, classes III and IV, appeared after the split of bryophytes and green algae after analyzing the MAPK cascade genes in 8 species, and their rapid expansion led to the great size of the families of MAPKs...
2017: Horticulture Research
Xiliang Qi, Congli Liu, Lulu Song, Yuhong Li, Ming Li
Sweet cherry (Prunus avium L.) is an important fruit crop in which fruit size is strongly associated with commercial value; few genes associated with fruit size have, however, been identified in sweet cherry. Members of the CYP78A subfamily, a group of important cytochrome P450s, have been found to be involved in controlling seed size and development in Arabidopsis thaliana, rice, soybean, and tomato. However, the influence of CYP78A members in controlling organ size and the underlying molecular mechanisms in sweet cherry and other fruit trees remains unclear...
2017: Frontiers in Plant Science
Hemasundar Alavilli, Hyoungseok Lee, Mira Park, Dae-Jin Yun, Byeong-Ha Lee
PaFKBP12 overexpression in Arabidopsis resulted in stress tolerance to heat, ABA, drought, and salt stress, in addition to growth promotion under normal conditions. Polytrichastrum alpinum (alpine haircap moss) is one of polar organisms that can withstand the severe conditions of the Antarctic. In this study, we report the isolation of a peptidyl prolyl isomerase FKBP12 gene (PaFKBP12) from P. alpinum collected in the Antarctic and its functional implications in development and stress responses in plants. In P...
December 15, 2017: Plant Cell Reports
Genevieve M Hoopes, John P Hamilton, Jeongwoon Kim, Dongyan Zhao, Krystle Wiegert-Rininger, Emily Crisovan, C Robin Buell
Calotropis gigantea produces specialized secondary metabolites known as cardenolides which have anti-cancer and anti-malarial properties. Although transcriptomic studies have been conducted in other cardenolide-producing species, no nuclear genome assembly for an Asterid cardenolide-producing species has been reported to date. A high quality de novo assembly was generated for C. gigantea, representing 157,284,427 bp with an N50 scaffold size of 805,959 bp, for which quality assessments indicated a near complete representation of the genic space...
December 12, 2017: G3: Genes—Genomes—Genetics
Jin A Kim, Hyun-Soon Kim, Seo-Hwa Choi, Ji-Young Jang, Mi-Jeong Jeong, Soo In Lee
Carbohydrates are the primary energy source for plant development. Plants synthesize sucrose in source organs and transport them to sink organs during plant growth. This metabolism is sensitive to environmental changes in light quantity, quality, and photoperiod. In the daytime, the synthesis of sucrose and starch accumulates, and starch is degraded at nighttime. The circadian clock genes provide plants with information on the daily environmental changes and directly control many developmental processes, which are related to the path of primary metabolites throughout the life cycle...
December 11, 2017: International Journal of Molecular Sciences
Olivier Godfroy, Toshiki Uji, Chikako Nagasato, Agnieszka P Lipinska, Delphine Scornet, Akira F Peters, Komlan Avia, Sebastien Colin, Laure Mignerot, Taizo Motomura, J Mark Cock, Susana M Coelho
Brown algae are one of the most developmentally complex groups within the eukaryotes. As in many land plants and animals, their main body axis is established early in development, when the initial cell gives rise to two daughter cells that have apical and basal identities, equivalent to shoot and root identities in land plants, respectively. We show here that mutations in the Ectocarpus DISTAG ( DIS ) gene lead to loss of basal structures during both the gametophyte and the sporophyte generations. Several abnormalities were observed in the germinating initial cell in dis mutants, including increased cell size, disorganization of the Golgi apparatus, disruption of the microtubule network, and aberrant positioning of the nucleus...
December 2017: Plant Cell
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"