Read by QxMD icon Read


Thomas R Clancy
As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on the application of management strategies in health systems. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This article is the 3rd in a series of articles that focus on why technological complexity is increasing and strategies nurse administrators can use to successfully implement change in the face of it...
February 2018: Journal of Nursing Administration
Yang Liu, Xiao Yuan, Ming-Han Li, Weijun Zhang, Qi Zhao, Jiaqiang Zhong, Yuan Cao, Yu-Huai Li, Luo-Kan Chen, Hao Li, Tianyi Peng, Yu-Ao Chen, Cheng-Zhi Peng, Sheng-Cai Shi, Zhen Wang, Lixing You, Xiongfeng Ma, Jingyun Fan, Qiang Zhang, Jian-Wei Pan
Quantum mechanics provides the means of generating genuine randomness that is impossible with deterministic classical processes. Remarkably, the unpredictability of randomness can be certified in a manner that is independent of implementation devices. Here, we present an experimental study of device-independent quantum random number generation based on a detection-loophole-free Bell test with entangled photons. In the randomness analysis, without the independent identical distribution assumption, we consider the worst case scenario that the adversary launches the most powerful attacks against the quantum adversary...
January 5, 2018: Physical Review Letters
Zhoushen Huang, W Zhu, Daniel P Arovas, Jian-Xin Zhu, Alexander V Balatsky
We show that the topological index of a wave function, computed in the space of twisted boundary phases, is preserved under Hilbert space truncation, provided the truncated state remains normalizable. If truncation affects the boundary condition of the resulting state, the invariant index may acquire a different physical interpretation. If the index is symmetry protected, the truncation should preserve the protecting symmetry. We discuss implications of this invariance using paradigmatic integer and fractional Chern insulators, Z_{2} topological insulators, and spin-1 Affleck-Kennedy-Lieb-Tasaki and Heisenberg chains, as well as its relation with the notion of bulk entanglement...
January 5, 2018: Physical Review Letters
Teerin Liewluck, Margherita Milone
Limb-girdle muscular dystrophies (LGMD) are a group of genetically heterogeneous, autosomal inherited muscular dystrophies with childhood-to-adult onset, manifesting with hip and shoulder girdle muscle weakness. When the term LGMD was first conceptualized in 1954, it was thought to be a single entity. Currently, there are 8 autosomal dominant (LGMD1A-1H) and 26 autosomal recessive (LGMD2A-2Z) variants according to the Online Mendelian Inheritance in Man database. In addition, there are other genetically-identified muscular dystrophies with a LGMD phenotype not yet classified as LGMD...
January 19, 2018: Muscle & Nerve
Malcolm Parker, Lindy Willmott, Ben White, Gail Williams, Colleen Cartwright
Over several decades, ethics and law have been applied to medical education and practice in a way that reflects the continuation during the twentieth century of the strong distinction between facts and values. We explain the development of applied ethics and applied medical law and report selected results that reflect this applied model from an empirical project examining doctors' decisions on withdrawing/withholding treatment from patients who lack decision-making capacity. The model is critiqued, and an alternative "constitutive" model is supported on the basis that medicine, medical law, and medical ethics exemplify the inevitable entanglement of facts and values...
January 18, 2018: Journal of Bioethical Inquiry
Alexey A Melnikov, Hendrik Poulsen Nautrup, Mario Krenn, Vedran Dunjko, Markus Tiersch, Anton Zeilinger, Hans J Briegel
How useful can machine learning be in a quantum laboratory? Here we raise the question of the potential of intelligent machines in the context of scientific research. A major motivation for the present work is the unknown reachability of various entanglement classes in quantum experiments. We investigate this question by using the projective simulation model, a physics-oriented approach to artificial intelligence. In our approach, the projective simulation system is challenged to design complex photonic quantum experiments that produce high-dimensional entangled multiphoton states, which are of high interest in modern quantum experiments...
January 18, 2018: Proceedings of the National Academy of Sciences of the United States of America
J S Langer
The thermodynamic theory of dislocation-enabled plasticity is based on two unconventional hypotheses. The first of these is that a system of dislocations, driven by external forces and irreversibly exchanging heat with its environment, must be characterized by a thermodynamically defined effective temperature that is not the same as the ordinary temperature. The second hypothesis is that the overwhelmingly dominant mechanism controlling plastic deformation is thermally activated depinning of entangled pairs of dislocations...
November 2017: Physical Review. E
H M Frazão, J G Peixoto de Faria, G Q Pellegrino, M C Nemes
In this work we study an effective three-mode model describing interacting bosons. These bosons can be considered as exciton-polaritons in a semiconductor microcavity at the magic angle. This model exhibits quantum phase transition (QPT) when the parameters of the corresponding Hamiltonian are continuously varied. The properties of the Hamiltonian spectrum (e.g., the distance between two adjacent energy levels) and the phase space structure of the thermodynamic limit of the model are used to indicate QPT. The relation between spectral properties of the Hamiltonian and the corresponding classical frame of the thermodynamic limit of the model is established as indicative of QPT...
December 2017: Physical Review. E
Wolfgang Rudolf Bauer
Flow of particles of two different species through a narrow channel with solely two discrete spatial positions is analyzed with respect to the species' capability to cooperate or compete for transport. The origin of the latter arises from particle-channel and interparticle interactions within the channel, i.e., blocking the position of a particle, and its interaction with its neighbors in the channel. The variety of occupation options within the channel defines the state space. The transition dynamics within is considered as a continuous Markov process, which, in contrast to mean-field approaches, conserves explicitly spatial correlations...
December 2017: Physical Review. E
Udaysinh T Bhosale
The probability of large deviations of the smallest Schmidt eigenvalue for random pure states of bipartite systems, denoted as A and B, is computed analytically using a Coulomb gas method. It is shown that this probability, for large N, goes as exp[-βN^{2}Φ(ζ)], where the parameter β is the Dyson index of the ensemble, ζ is the large deviation parameter, while the rate function Φ(ζ) is calculated exactly. Corresponding equilibrium Coulomb charge density is derived for its large deviations. Effects of the large deviations of the extreme (largest and smallest) Schmidt eigenvalues on the bipartite entanglement are studied using the von Neumann entropy...
December 2017: Physical Review. E
Pablo D Bergamasco, Gabriel G Carlo, Alejandro M F Rivas
We study a generic and paradigmatic two-degrees-of-freedom system consisting of two coupled perturbed cat maps with different types of dynamics. The Wigner separability entropy (WSE)-equivalent to the operator space entanglement entropy-and the classical separability entropy (CSE) are used as measures of complexity. For the case where both degrees of freedom are hyperbolic, the maps are classically ergodic and the WSE and the CSE behave similarly, growing to higher values than in the doubly elliptic case. However, when one map is elliptic and the other hyperbolic, the WSE reaches the same asymptotic value than that of the doubly hyperbolic case but at a much slower rate...
December 2017: Physical Review. E
Hiroshi Ueda, Kouichi Okunishi, Roman Krčmár, Andrej Gendiar, Seiji Yunoki, Tomotoshi Nishino
In the context of a discrete analog of the classical Heisenberg model, we investigate the critical behavior of the icosahedron model, where the interaction energy is defined as the inner product of neighboring vector spins of unit length pointing to the vertices of the icosahedron. The effective correlation length and magnetization of the model are calculated by means of the corner-transfer-matrix renormalization group (CTMRG) method. A scaling analysis with respect to the cutoff dimension m in CTMRG reveals a second-order phase transition characterized by the exponents ν=1...
December 2017: Physical Review. E
Seunghwan Shin, Kevin D Dorfman, Xiang Cheng
Using high-resolution confocal rheometry, we study the shear profiles of well-entangled DNA solutions under large-amplitude oscillatory shear in a rectilinear planar shear cell. With increasing Weissenberg number (Wi), we observe successive transitions from normal Newtonian linear shear profiles to wall-slip dominant shear profiles and, finally, to shear-banding profiles at high Wi. To investigate the microscopic origin of the observed shear banding, we study the dynamics of micron-sized tracers embedded in DNA solutions...
December 2017: Physical Review. E
Sebastian Leitmann, Felix Höfling, Thomas Franosch
We study the dynamics of solutions of infinitely thin needles up to densities deep in the semidilute regime by Brownian dynamics simulations. For high densities, these solutions become strongly entangled and the motion of a needle is essentially restricted to a one-dimensional sliding in a confining tube composed of neighboring needles. From the density-dependent behavior of the orientational and translational diffusion, we extract the long-time transport coefficients and the geometry of the confining tube...
July 2017: Physical Review. E
Eike P Thesing, Lukas Gilz, James R Anglin
Hamiltonian daemons have recently been defined classically as small, closed Hamiltonian systems which can exhibit secular energy transfer from high-frequency to low-frequency degrees of freedom (steady downconversion), analogous to the steady transfer of energy in a combustion engine from the high terahertz frequencies of molecular excitations to the low kilohertz frequencies of piston motion [L. Gilz, E. P. Thesing, and J. R. Anglin, Phys. Rev. E 94, 042127 (2016)2470-004510.1103/PhysRevE.94.042127]. Classical daemons achieve downconversion within a small, closed system by exploiting nonlinear resonances; the adiabatic theorem permits their operation but imposes nontrivial limitations on their efficiency...
July 2017: Physical Review. E
Subas Dhakal, Radhakrishna Sureshkumar
We investigate the mechanisms of anomalous diffusion in cationic surfactant micelles using molecular dynamics simulations in the presence of explicit salt and solvent-mediated interactions. Simulations show that when the counterion density increases, saddle-shaped branched interfaces manifest. In experiments, branched structures exhibit lower viscosity as compared to linear and wormlike micelles. This has long been attributed to stress relaxation arising from the sliding motion of branches along the main chain...
July 2017: Physical Review. E
R B Onzima, M R Upadhyay, R Mukiibi, E Kanis, M A M Groenen, R P M A Crooijmans
Uganda has a large population of goats, predominantly from indigenous breeds reared in diverse production systems, whose existence is threatened by crossbreeding with exotic Boer goats. Knowledge about the genetic characteristics and relationships among these Ugandan goat breeds and the potential admixture with Boer goats is still limited. Using a medium-density single nucleotide polymorphism (SNP) panel, we assessed the genetic diversity, population structure and admixture in six goat breeds in Uganda: Boer, Karamojong, Kigezi, Mubende, Small East African and Sebei...
January 17, 2018: Animal Genetics
Alexia Salavrakos, Remigiusz Augusiak, Jordi Tura, Peter Wittek, Antonio Acín, Stefano Pironio
Bell inequalities have traditionally been used to demonstrate that quantum theory is nonlocal, in the sense that there exist correlations generated from composite quantum states that cannot be explained by means of local hidden variables. With the advent of device-independent quantum information protocols, Bell inequalities have gained an additional role as certificates of relevant quantum properties. In this work, we consider the problem of designing Bell inequalities that are tailored to detect maximally entangled states...
July 28, 2017: Physical Review Letters
F Martin Ciurana, G Colangelo, L Slodička, R J Sewell, M W Mitchell
We demonstrate a new technique for detecting the amplitude of arbitrarily chosen components of radio-frequency waveforms based on stroboscopic backaction evading measurements. We combine quantum nondemolition measurements and stroboscopic probing to detect waveform components with magnetic sensitivity beyond the standard quantum limit. Using an ensemble of 1.5×10^{6} cold rubidium atoms, we demonstrate entanglement-enhanced sensing of sinusoidal and linearly chirped waveforms, with 1.0(2) and 0.8(3) dB metrologically relevant noise reduction, respectively...
July 28, 2017: Physical Review Letters
Elton Yechao Zhu, Quntao Zhuang, Peter W Shor
Finding the optimal encoding strategies can be challenging for communication using quantum channels, as classical and quantum capacities may be superadditive. Entanglement assistance can often simplify this task, as the entanglement-assisted classical capacity for any channel is additive, making entanglement across channel uses unnecessary. If the entanglement assistance is limited, the picture is much more unclear. Suppose the classical capacity is superadditive, then the classical capacity with limited entanglement assistance could retain superadditivity by continuity arguments...
July 28, 2017: Physical Review Letters
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"