Read by QxMD icon Read

Synthetic biology plastic

Matthew Cole
Microscopic plastic (microplastic, 0.1 µm-5 mm) is a widespread pollutant impacting upon aquatic ecosystems across the globe. Environmental sampling has revealed synthetic fibers are prevalent in seawater, sediments and biota. However, microplastic fibers are rarely used in laboratory studies as they are unavailable for purchase and existing preparation techniques have limited application. To facilitate the incorporation of environmentally relevant microplastic fibers into future studies, new methods are required...
October 3, 2016: Scientific Reports
Todd Cowen, Kal Karim, Sergey Piletsky
The rational design of molecularly imprinted polymers (MIPs) has been a major contributor to their reputation as "plastic antibodies" - high affinity robust synthetic receptors which can be optimally designed, and produced for a much reduced cost than their biological equivalents. Computational design has become a routine procedure in the production of MIPs, and has led to major advances in functional monomer screening, selection of cross-linker and solvent, optimisation of monomer(s)-template ratio and selectivity analysis...
September 14, 2016: Analytica Chimica Acta
Raghu Kalluri
Among all cells, fibroblasts could be considered the cockroaches of the human body. They survive severe stress that is usually lethal to all other cells, and they are the only normal cell type that can be live-cultured from post-mortem and decaying tissue. Their resilient adaptation may reside in their intrinsic survival programmes and cellular plasticity. Cancer is associated with fibroblasts at all stages of disease progression, including metastasis, and they are a considerable component of the general host response to tissue damage caused by cancer cells...
August 23, 2016: Nature Reviews. Cancer
Alana K Greaves, Robert J Letcher
Organophosphate esters (OPEs) are synthetic phosphoric acid derivatives used in a wide variety of applications including as flame retardants and plasticizers. Their production and usage has increased in recent years, due to the phase-out of other flame retardant formulations (e.g., polybrominated diphenyl ethers). As such, there has been a recent push to understand the global distribution of OPEs and their behaviour in biota. Multiple studies have been published over the last few years pertaining to OPE concentrations in biotic and abiotic environmental compartments, as well as the metabolism of OPEs in biota...
August 10, 2016: Bulletin of Environmental Contamination and Toxicology
Anita S W Chan, Pudupadi R Sundararajan
Self-sorting is the phenomenon in which there is high fidelity recognition and preference only for self and avoidance of nonself (narcissistic self-sorting). It has been observed in a number of biological systems and chiral synthetic molecules. We found that blends of biscarbamates, which are model compounds for polyurethanes, self-sort during crystallization [ J. Phys. Chem. B 2008 , 112 , 4223 - 4232 ], although these are not chiral molecules. Even if the two components in the blend differ only by a couple of CH2 groups in the side chain length, no intercomponent hydrogen bond forms, and the molecules self-sort...
September 1, 2016: Journal of Physical Chemistry. B
Víctor de Lorenzo, Philippe Marlière, Ricard Solé
Planet Earth's biosphere has evolved over billions of years as a balanced bio-geological system ultimately sustained by sunpower and the large-scale cycling of elements largely run by the global environmental microbiome. Humans have been part of this picture for much of their existence. But the industrial revolution started in the XIX century and the subsequent advances in medicine, chemistry, agriculture and communications have impacted such balances to an unprecedented degree - and the problem has nothing but exacerbated in the last 20 years...
September 2016: Microbial Biotechnology
Auxiliadora Prieto
Global warming, market and production capacity are being the key drivers for selecting the main players for the next decades in the market of bio-based plastics. The drop-in bio-based polymers such as the bio-based polyethylene terephtalate (PET) or polyethylene (PE), chemically identical to their petrochemical counterparts but having a component of biological origin, are in the top of the list. They are followed by new polymers such as PHA and PLA with a significant market growth rate since 2014 with projections to 2020...
September 2016: Microbial Biotechnology
Yanika Borg, Aurelija Marija Grigonyte, Philipp Boeing, Bethan Wolfenden, Patrick Smith, William Beaufoy, Simon Rose, Tonderai Ratisai, Alexey Zaikin, Darren N Nesbeth
Aim. The nascent field of bio-geoengineering stands to benefit from synthetic biologists' efforts to standardise, and in so doing democratise, biomolecular research methods. Roseobacter clade bacteria comprise 15-20% of oceanic bacterio-plankton communities, making them a prime candidate for establishment of synthetic biology chassis for bio-geoengineering activities such as bioremediation of oceanic waste plastic. Developments such as the increasing affordability of DNA synthesis and laboratory automation continue to foster the establishment of a global 'do-it-yourself' research community alongside the more traditional arenas of academe and industry...
2016: PeerJ
C J Murren, S E Diamond, J Auld, R Relyea, U Steiner, J Kingsolver
Plasticity has been acknowledged as having a central role in organismal evolutionary responses to environments (e.g. West-Eberhard 2003; Sultan 2015; Sgrò et al. 2016). As the field of plasticity expands (Bradshaw 1965, Schlichting and Pigliucci 1998; Sultan 2015), rich datasets of reaction norm variation across organisms, trait types and ecological conditions are ripe for syntheses. Quantitative syntheses have enhanced our understanding of other fundamental mechanisms of evolution (e.g. heritable genetic variation Mousseau and Roff 1987) and generated new hypotheses...
July 10, 2016: Journal of Evolutionary Biology
Theano D Karakosta, Antoninus Soosaipillai, Eleftherios P Diamandis, Ihor Batruch, Andrei P Drabovich
Human kallikrein-related peptidases (KLKs) are a group of 15 secreted serine proteases encoded by the largest contiguous cluster of protease genes in the human genome. KLKs are involved in coordination of numerous physiological functions including regulation of blood pressure, neuronal plasticity, skin desquamation, and semen liquefaction, and thus represent promising diagnostic and therapeutic targets. Until now, quantification of KLKs in biological and clinical samples was accomplished by enzyme-linked immunosorbent assays (ELISA)...
September 2016: Molecular & Cellular Proteomics: MCP
Céline Galvagnion, James W P Brown, Myriam M Ouberai, Patrick Flagmeier, Michele Vendruscolo, Alexander K Buell, Emma Sparr, Christopher M Dobson
Intracellular α-synuclein deposits, known as Lewy bodies, have been linked to a range of neurodegenerative disorders, including Parkinson's disease. α-Synuclein binds to synthetic and biological lipids, and this interaction has been shown to play a crucial role for both α-synuclein's native function, including synaptic plasticity, and the initiation of its aggregation. Here, we describe the interplay between the lipid properties and the lipid binding and aggregation propensity of α-synuclein. In particular, we have observed that the binding of α-synuclein to model membranes is much stronger when the latter is in the fluid rather than the gel phase, and that this binding induces a segregation of the lipids into protein-poor and protein-rich populations...
June 28, 2016: Proceedings of the National Academy of Sciences of the United States of America
Ryan McBride, James C Paulson, Robert P de Vries
Influenza A virus (IAV) hemagglutinins recognize sialic acids on the cell surface as functional receptors to gain entry into cells. Wild waterfowl are the natural reservoir for IAV, but IAV can cross the species barrier to poultry, swine, horses and humans. Avian viruses recognize sialic acid attached to a penultimate galactose by a α2-3 linkage (avian-type receptors) whereas human viruses preferentially recognize sialic acid with a α2-6 linkage (human-type receptors). To monitor if avian viruses are adapting to human type receptors, several methods can be used...
2016: Journal of Visualized Experiments: JoVE
Sunil Kumar, Melissa Birol, Diana E Schlamadinger, Slawomir P Wojcik, Elizabeth Rhoades, Andrew D Miranker
Disordered proteins, such as those central to Alzheimer's and Parkinson's, are particularly intractable for structure-targeted therapeutic design. Here we demonstrate the capacity of a synthetic foldamer to capture structure in a disease relevant peptide. Oligoquinoline amides have a defined fold with a solvent-excluded core that is independent of its outwardly projected, derivatizable moieties. Islet amyloid polypeptide (IAPP) is a peptide central to β-cell pathology in type II diabetes. A tetraquinoline is presented that stabilizes a pre-amyloid, α-helical conformation of IAPP...
2016: Nature Communications
Hannah Landecker
The cultivation of living organs, cells, animals, and embryos in the laboratory has been central to the production of biological knowledge. Over the twentieth century, the drive to variance control in the experimental setting led to systematic efforts to generate synthetic, chemically defined substitutes for complex natural foods, housing, and other substrates of life. This article takes up the history of chemically defined media with three aims in mind. First, to characterize patterns of decontextualization, tinkering, and negotiation between life and experimenter that occur across disparate histories of cultivation...
June 2016: Studies in History and Philosophy of Biological and Biomedical Sciences
Rossana Sussarellu, Marc Suquet, Yoann Thomas, Christophe Lambert, Caroline Fabioux, Marie Eve Julie Pernet, Nelly Le Goïc, Virgile Quillien, Christian Mingant, Yanouk Epelboin, Charlotte Corporeau, Julien Guyomarch, Johan Robbens, Ika Paul-Pont, Philippe Soudant, Arnaud Huvet
Plastics are persistent synthetic polymers that accumulate as waste in the marine environment. Microplastic (MP) particles are derived from the breakdown of larger debris or can enter the environment as microscopic fragments. Because filter-feeder organisms ingest MP while feeding, they are likely to be impacted by MP pollution. To assess the impact of polystyrene microspheres (micro-PS) on the physiology of the Pacific oyster, adult oysters were experimentally exposed to virgin micro-PS (2 and 6 µm in diameter; 0...
March 1, 2016: Proceedings of the National Academy of Sciences of the United States of America
António Pereira, Ana Teresa Caldeira, Belmira Maduro, Peter Vandenabeele, António Candeias
The study and preservation of museum collections requires complete knowledge and understanding of constituent materials that can be natural, synthetic, or semi-synthetic polymers. In former times, objects were incorporated in museum collections and classified solely by their appearance. New studies, prompted by severe degradation processes or conservation-restoration actions, help shed light on the materiality of objects that can contradict the original information or assumptions. The selected case study presented here is of a box dating from the beginning of the 20th century that belongs to the Portuguese National Ancient Art Museum...
January 2016: Applied Spectroscopy
Adam J Bauermeister, Alexander Zuriarrain, Martin I Newman
BACKGROUND: Increasingly affordable three-dimensional (3D) printing technologies now make it possible for surgeons to create highly customizable patient-tailored products. This process provides the potential to produce individualized artificial and biologic implants, regenerative scaffolds, and cell-specific replacement tissue and organs. The combination of accurate volumetric analysis and production of 3D printed biologic materials are evolving techniques that demonstrate great promise in achieving an accurate and naturally appearing anthropomorphic reconstruction...
December 15, 2015: Annals of Plastic Surgery
Mehdi Zolfaghari, Patrick Drogui, Brahima Seyhi, Satinder Kaur Brar, Gerardo Buelna, Rino Dubé, Nouha Klai
Highly hydrophobic Di 2-ethyl hexyl phthalate (DEHP) is one of the most prevalent plasticizers in wastewaters. Since its half-life in biological treatment is around 25days, it can be used as an efficiency indicator of wastewater treatment plant for the removal of hydrophobic emerging contaminants. In this study, the performance of submerged membrane bioreactor was monitored to understand the effect of DEHP on the growth of aerobic microorganisms. The data showed that the chemical oxygen demand (COD) and ammonia concentration were detected below 10 and 1...
November 1, 2015: Journal of Environmental Sciences (China)
Carlotta Negri, Alessandro L Sellerio, Stefano Zapperi, M Carmen Miguel
Designing and controlling particle self-assembly into robust and reliable high-performance smart materials often involves crystalline ordering in curved spaces. Examples include carbon allotropes like graphene, synthetic materials such as colloidosomes, or biological systems like lipid membranes, solid domains on vesicles, or viral capsids. Despite the relevance of these structures, the irreversible deformation and failure of curved crystals is still mostly unexplored. Here, we report simulation results of the mechanical deformation of colloidal crystalline shells that illustrate the subtle role played by geometrically necessary topological defects in controlling plastic yielding and failure...
November 24, 2015: Proceedings of the National Academy of Sciences of the United States of America
André C Vieira, Rui M Guedes, Volnei Tita
The use of biodegradable synthetic grafts to repair injured ligaments may overcome the disadvantages of other solutions. Apart from biological compatibility, these devices shall also be functionally compatible and temporarily displayed, during the healing process, adequate mechanical support. Laxity of these devices is an important concern. This can cause failure since it may result in joint instability. Laxity results from a progressive accumulation of plastic strain during the cyclic loading. The functional compatibility of a biodegradable synthetic graft and, therefore, the global mechanical properties of the scaffold during degradation, can be optimised using computer-aiding and numerical tools...
September 18, 2015: Journal of Biomechanics
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"