keyword
MENU ▼
Read by QxMD icon Read
search

Transcription factor tissue engineering

keyword
https://www.readbyqxmd.com/read/28542462/a-human-monocytic-nf-%C3%AE%C2%BAb-fluorescent-reporter-cell-line-for-detection-of-microbial-contaminants-in-biological-samples
#1
Claire Battin, Annika Hennig, Patrick Mayrhofer, Renate Kunert, Gerhard J Zlabinger, Peter Steinberger, Wolfgang Paster
Sensing of pathogens by innate immune cells is essential for the initiation of appropriate immune responses. Toll-like receptors (TLRs), which are highly sensitive for various structurally and evolutionary conserved molecules derived from microbes have a prominent role in this process. TLR engagement results in the activation of the transcription factor NF-κB, which induces the expression of cytokines and other inflammatory mediators. The exquisite sensitivity of TLR signalling can be exploited for the detection of bacteria and microbial contaminants in tissue cultures and in protein preparations...
2017: PloS One
https://www.readbyqxmd.com/read/28529106/engineered-cartilage-regeneration-from-adipose-tissue-derived-mesenchymal-stem-cells-a-morphomolecular-study-on-osteoblast-chondrocyte-and-apoptosis-evaluation
#2
Marta Anna Szychlinska, Paola Castrogiovanni, Houda Nsir, Michelino Di Rosa, Claudia Guglielmino, Rosalba Parenti, Giovanna Calabrese, Elisabetta Pricoco, Lucia Salvatorelli, Gaetano Magro, Rosa Imbesi, Ali Mobasheri, Giuseppe Musumeci
The poor self-repair capacity of cartilage tissue in degenerative conditions, such as osteoarthritis (OA), has prompted the development of a variety of therapeutic approaches, such as cellular therapies and tissue engineering based on the use of mesenchymal stem cells (MSCs). The aim of this study is to demonstrate, for the first time, that the chondrocytes differentiated from rat adipose tissue derived-MSCs (AMSCs), are able to constitute a morphologically and biochemically healthy hyaline cartilage after 6 weeks of culture on a Collagen Cell Carrier (CCC) scaffold...
May 18, 2017: Experimental Cell Research
https://www.readbyqxmd.com/read/28513058/pro-myogenic-and-low-oxygen-culture-increases-expression-of-contractile-smooth-muscle-markers-in-human-fibroblasts
#3
Matija Veber, David Dolivo, Marsha Rolle, Tanja Dominko
Smooth muscle cells are essential for tissue engineering strategies to fabricate organs such as blood vessels, esophagus, and bladder, and to create disease models of these systems. In order for such therapies and models to be feasible, smooth muscle cells must be sourced effectively to enable production of large numbers of functional cells. In vitro, smooth muscle cells divide slowly and demonstrate short proliferative lifespans compared to other types of cells including stem cells and fibroblasts, limiting the number of cells that can be derived from expansion in culture of a primary isolation...
May 17, 2017: Journal of Tissue Engineering and Regenerative Medicine
https://www.readbyqxmd.com/read/28452332/function-and-mechanism-of-mesoporous-bioactive-glass-adsorbed-epidermal-growth-factor-for-accelerating-bone-tissue-regeneration
#4
Xiaoyan Wang, Wei Chen, Qianqian Liu, Kai Gao, Gan Wang, Li Gao, Long Liu
Mesoporous bioactive glass (MBG) has been demonstrated to play a vital role in bone tissue engineering due to its bioactivity, biocompatibility, and osteoinduction properties. Here, we report that MBG grafted with an amino group (MBG-NH2) and MBG-NH2 adsorbed epidermal growth factor (EGF) (MBG-NH2/EGF) sustained-release EGF, and MBG-NH2/EGF could accelerate osteoblast differentiation and mineralization in MC3T3-E1 cells. We found that MBG-NH2 could promote bone-like deposit formation and Ca deposition in vitro...
April 28, 2017: Biomedical Materials
https://www.readbyqxmd.com/read/28447733/gene-expression-profile-in-human-induced-pluripotent-stem-cells-chondrogenic-differentiation-in%C3%A2-vitro-part-b
#5
Ewelina Augustyniak, Wiktoria Maria Suchorska, Tomasz Trzeciak, Magdalena Richter
The development of human induced pluripotent stem cells (hiPSCs) is considered a turning point in tissue engineering. However, more data are required to improve understanding of key aspects of the cell differentiation process, including how specific chondrogenic processes affect the gene expression profile of chondrocyte‑like cells and the relative value of cell differentiation markers. The main aims of the present study were as follows: To determine the gene expression profile of chondrogenic‑like cells derived from hiPSCs cultured in mediums conditioned with HC‑402‑05a cells or supplemented with transforming growth factor β3 (TGF‑β3), and to assess the relative utility of the most commonly‑used chondrogenic markers as indicators of cell differentiation...
May 2017: Molecular Medicine Reports
https://www.readbyqxmd.com/read/28428782/a-recombinant-potato-virus-y-infectious-clone-tagged-with-the-rosea1-visual-marker-pvy-ros1-facilitates-the-analysis-of-viral-infectivity-and-allows-the-production-of-large-amounts-of-anthocyanins-in-plants
#6
Teresa Cordero, Mohamed A Mohamed, Juan-José López-Moya, José-Antonio Daròs
Potato virus Y (PVY) is a major threat to the cultivation of potato and other solanaceous plants. By inserting a cDNA coding for the Antirrhinum majus Rosea1 transcription factor into a PVY infectious clone, we created a biotechnological tool (PVY-Ros1) that allows infection by this relevant plant virus to be tracked by the naked eye with no need for complex instrumentation. Rosea1 is an MYB-type transcription factor whose expression activates the biosynthesis of anthocyanin pigments in a dose-specific and cell-autonomous manner...
2017: Frontiers in Microbiology
https://www.readbyqxmd.com/read/28421329/characterization-of-two-tt2-type-myb-transcription-factors-regulating-proanthocyanidin-biosynthesis-in-tetraploid-cotton-gossypium-hirsutum
#7
Nan Lu, Marissa Roldan, Richard A Dixon
Two TT2-type MYB transcription factors identified from tetraploid cotton are involved in regulating proanthocyanidin biosynthesis, providing new strategies for engineering condensed tannins in crops. Proanthocyanidins (PAs), also known as condensed tannins, are important secondary metabolites involved in stress resistance in plants, and are health supplements that help to reduce cholesterol levels. As one of the most widely grown crops in the world, cotton provides the majority of natural fabrics and is a supplemental food for ruminant animals...
April 18, 2017: Planta
https://www.readbyqxmd.com/read/28420224/silk-fibroin-alginate-hydroxyapatite-composite-particles-in-bone-tissue-engineering-applications-in-vivo
#8
You-Young Jo, Seong-Gon Kim, Kwang-Jun Kwon, HaeYong Kweon, Weon-Sik Chae, Won-Geun Yang, Eun-Young Lee, Hyun Seok
The aim of this study was to evaluate the in vivo bone regeneration capability of alginate (AL), AL/hydroxyapatite (HA), and AL/HA/silk fibroin (SF) composites. Forty Sprague Dawley rats were used for the animal experiments. Central calvarial bone (diameter: 8.0 mm) defects were grafted with AL, AL/HA, or AL/HA/SF. New bone formation was evaluated by histomorphometric analysis. To demonstrate the immunocompatibility of each group, the level of tumor necrosis factor (TNF)-α expression was studied by immunohistochemistry (IHC) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) at eight weeks post implantation...
April 18, 2017: International Journal of Molecular Sciences
https://www.readbyqxmd.com/read/28415912/a-method-for-the-immunohistochemical-identification-and-localization-of-osterix-in-periosteum-wrapped-constructs-for-tissue-engineering-of-bone
#9
Phillip McClellan, Robin Jacquet, Qing Yu, William J Landis
A novel immunohistochemistry (IHC) approach has been developed to label and localize osterix, a bone-specific transcription factor, within formalin-fixed, paraffin-embedded, tissue-engineered constructs uniquely containing synthetic polymers and human periosteal tissue. Generally, such specimens consisting in part of polymeric materials and mineral are particularly difficult for IHC identification of proteins. Samples here were fabricated from human periosteum, electrospun poly-l-lactic acid (PLLA) nanofibers, and polycaprolactone/poly-l-lactic acid (PCL/PLLA, 75/25) scaffolds and harvested following 10 weeks of implantation in athymic mice...
April 1, 2017: Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society
https://www.readbyqxmd.com/read/28409292/effects-of-the-donor-age-on-proliferation-senescence-and-osteogenic-capacity-of-human-urine-derived-stem-cells
#10
Peng Gao, Peilin Han, Dapeng Jiang, Shulong Yang, Qingbo Cui, Zhaozhu Li
To study the effects of the donor age on the application potential of human urine-derived stem cells (hUSCs) in bone tissue engineering, by comparing proliferation, senescence and osteogenic differentiation of hUSCs originated from volunteers with different ages. The urine samples were collected from 19 healthy volunteers (6 cases from children group aged from 5 to 14, 5 cases from middle-aged group aged from 30 to 40, and 8 cases from the elder group aged from 65 to 75), and hUSCs were isolated and cultured...
April 13, 2017: Cytotechnology
https://www.readbyqxmd.com/read/28389546/high-levels-of-the-xenorhabdus-nematophila-transcription-factor-lrp-promote-mutualism-with-steinernema-carpocapsae-nematode-hosts
#11
Mengyi Cao, Tilak Patel, Tara Rickman, Heidi Goodrich-Blair, Elizabeth A Hussa
Xenorhabdus nematophila bacteria are mutualistic symbionts of Steinernema carpocapsae nematodes and pathogens of insects. The X. nematophila global regulator Lrp controls expression of many genes involved in both mutualism and pathogenic activities, suggesting a role in the transition between the two host organisms. We previously reported that natural populations of X. nematophila exhibit variable levels of Lrp expression, and that cells expressing relatively low levels of Lrp are optimized for virulence in the insect Manduca sexta...
April 7, 2017: Applied and Environmental Microbiology
https://www.readbyqxmd.com/read/28363788/mesenchymal-stem-cell-fate-following-non-viral-gene-transfection-strongly-depends-on-the-choice-of-delivery-vector
#12
T Gonzalez-Fernandez, B N Sathy, C Hobbs, G M Cunniffe, H O McCarthy, N J Dunne, V Nicolosi, F J O'Brien, D J Kelly
Controlling the phenotype of mesenchymal stem cells (MSCs) through the delivery of regulatory genes is a promising strategy in tissue engineering (TE). Essential to effective gene delivery is the choice of gene carrier. Non-viral delivery vectors have been extensively used in TE, however their intrinsic effects on MSC differentiation remain poorly understood. The objective of this study was to investigate the influence of three different classes of non-viral gene delivery vectors: (1) cationic polymers (polyethylenimine, PEI), (2) inorganic nanoparticles (nanohydroxyapatite, nHA) and (3) amphipathic peptides (RALA peptide) on modulating stem cell fate after reporter and therapeutic gene delivery...
March 28, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28363521/effectiveness-of-tissue-engineered-chitosan-gelatin-composite-scaffold-loaded-with-human-platelet-gel-in-regeneration-of-critical-sized-radial-bone-defect-in-rat
#13
Ahmad Oryan, Soodeh Alidadi, Amin Bigham-Sadegh, Ali Moshiri, Amir Kamali
Although many strategies have been utilized to accelerate bone regeneration, an appropriate treatment strategy to regenerate a new bone with optimum morphology and mechanical properties has not been invented as yet. This study investigated the healing potential of a composite scaffold consisting of chitosan (CS), gelatin (Gel) and platelet gel (PG), named CS-Gel-PG, on a bilateral critical sized radial bone defect in rat. Eighty radial bone defects were bilaterally created in 40 Sprague-Dawley rats and were randomly divided into eight groups including untreated, autograft, CS, Gel, CS-PG, Gel-PG, CS-Gel, and CS-Gel-PG treated defects...
March 29, 2017: Journal of Controlled Release: Official Journal of the Controlled Release Society
https://www.readbyqxmd.com/read/28356547/mechanisms-of-ips-cell-generation-and-beyond
#14
Keisuke Kaji
The generation of induced pluripotent stem cells (iPSCs) achieved by overexpression of Oct4, Sox2, Klf4 and c-Myc, transformed our classical views of the cellular epigenetic landscape and delivered a new concept for cell and tissue engineering. In addition to iPSCs, several other cell types have also been generated by master transcription factor (TF)-mediated transdifferentiation. However, the critical molecular mechanisms amongst diverse cellular identity changes are not well understood. Through the investigation of reprogramming mechanisms, we recently revealed that over-expression of constitutive active Smad3 boosted not only iPSC generation, but also 3 other master TF-mediated conversions, from B cells to macrophages, myoblasts to adipocytes, and human fibroblasts to neurons...
2017: Keio Journal of Medicine
https://www.readbyqxmd.com/read/28350044/bone-morphogenetic-protein-2-enhances-the-osteogenic-differentiation-capacity-of-mesenchymal-stromal-cells-derived-from-human-bone-marrow-and-umbilical-cord
#15
Kulisara Marupanthorn, Chairat Tantrawatpan, Pakpoom Kheolamai, Duangrat Tantikanlayaporn, Sirikul Manochantr
Mesenchymal stromal cells (MSCs) are multipotent cells that can give rise to different cell types of the mesodermal lineages. They are powerful sources for cell therapy in regenerative medicine as they can be isolated from various tissues, and can be expanded and induced to differentiate into multiple lineages. Recently, the umbilical cord has been suggested as an alternative source of MSCs. Although MSCs derived from the umbilical cord can be induced to differentiate into osteoblasts with a phenotypic similarity to that of bone marrow-derived MSCs, the differentiation ability is not consistent...
February 1, 2017: International Journal of Molecular Medicine
https://www.readbyqxmd.com/read/28344151/enhancing-oligodendrocyte-differentiation-by-transient-transcription-activation-via-dna-nanoparticle-mediated-transfection
#16
Xiaowei Li, Stephany Y Tzeng, Camila Gadens Zamboni, Vassilis E Koliatsos, Guo-Li Ming, Jordan J Green, Hai-Quan Mao
Current approaches to derive oligodendrocytes from human pluripotent stem cells (hPSCs) need extended exposure of hPSCs to growth factors and small molecules, which limits their clinical application because of the lengthy culture time required and low generation efficiency of myelinating oligodendrocytes. Compared to extrinsic growth factors and molecules, oligodendrocyte differentiation and maturation can be more effectively modulated by regulation of the cell transcription network. In the developing central nervous system (CNS), two basic helix-loop-helix transcription factors, Olig1 and Olig2, are decisive in oligodendrocyte differentiation and maturation...
March 23, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28297585/electromechanical-conditioning-of-adult-progenitor-cells-improves-recovery-of-cardiac-function-after-myocardial-infarction
#17
Aida Llucià-Valldeperas, Carolina Soler-Botija, Carolina Gálvez-Montón, Santiago Roura, Cristina Prat-Vidal, Isaac Perea-Gil, Benjamin Sanchez, Ramon Bragos, Gordana Vunjak-Novakovic, Antoni Bayes-Genis
Cardiac cells are subjected to mechanical and electrical forces, which regulate gene expression and cellular function. Therefore, in vitro electromechanical stimuli could benefit further integration of therapeutic cells into the myocardium. Our goals were (a) to study the viability of a tissue-engineered construct with cardiac adipose tissue-derived progenitor cells (cardiac ATDPCs) and (b) to examine the effect of electromechanically stimulated cardiac ATDPCs within a myocardial infarction (MI) model in mice for the first time...
March 2017: Stem Cells Translational Medicine
https://www.readbyqxmd.com/read/28276640/prospective-review-of-mesenchymal-stem-cells-differentiation-into-osteoblasts
#18
REVIEW
Priyanka Garg, Matthew M Mazur, Amy C Buck, Meghan E Wandtke, Jiayong Liu, Nabil A Ebraheim
Stem cell research has been a popular topic in the past few decades. This review aims to discuss factors that help regulate, induce, and enhance mesenchymal stem cell (MSC) differentiation into osteoblasts for bone regeneration. The factors analyzed include bone morphogenic protein (BMP), transforming growth factor β (TGF-β), stromal cell-derived factor 1 (SDF-1), insulin-like growth factor type 1 (IGF-1), histone demethylase JMJD3, cyclin dependent kinase 1 (CDK1), fucoidan, Runx2 transcription factor, and TAZ transcriptional coactivator...
February 2017: Orthopaedic Surgery
https://www.readbyqxmd.com/read/28210626/osteogenic-differentiation-capacity-of-in-vitro-cultured-human-skeletal-muscle-for-expedited-bone-tissue-engineering
#19
Chunlei Miao, Lulu Zhou, Lufeng Tian, Yingjie Zhang, Wei Zhang, Fanghong Yang, Tianyi Liu, Shengjian Tang, Fangjun Liu
Expedited bone tissue engineering employs the biological stimuli to harness the intrinsic regenerative potential of skeletal muscle to trigger the reparative process in situ to improve or replace biological functions. When genetically modified with adenovirus mediated BMP2 gene transfer, muscle biopsies from animals have demonstrated success in regenerating bone within rat bony defects. However, it is uncertain whether the human adult skeletal muscle displays an osteogenic potential in vitro when a suitable biological trigger is applied...
2017: BioMed Research International
https://www.readbyqxmd.com/read/28204808/bone-morphogenetic-protein-2-enhances-the-osteogenic-differentiation-capacity-of-mesenchymal-stromal-cells-derived-from-human-bone-marrow-and-umbilical-cord
#20
Kulisara Marupanthorn, Chairat Tantrawatpan, Pakpoom Kheolamai, Duangrat Tantikanlayaporn, Sirikul Manochantr
Mesenchymal stromal cells (MSCs) are multipotent cells that can give rise to different cell types of the mesodermal lineages. They are powerful sources for cell therapy in regenerative medicine as they can be isolated from various tissues, and can be expanded and induced to differentiate into multiple lineages. Recently, the umbilical cord has been suggested as an alternative source of MSCs. Although MSCs derived from the umbilical cord can be induced to differentiate into osteoblasts with a phenotypic similarity to that of bone marrow-derived MSCs, the differentiation ability is not consistent...
March 2017: International Journal of Molecular Medicine
keyword
keyword
43614
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"