Read by QxMD icon Read

Transcription factor tissue engineering

Jezamine Lim, Zainul Rashid Mohamad Razi, Jiaxian Law, Azmawati Mohammed Nawi, Ruszymah Binti Haji Idrus, Min Hwei Ng
BACKGROUND AIMS: Human Wharton's jelly-derived mesenchymal stromal cells (hWJMSCs) are possibly the most suitable allogeneic cell source for stromal cell therapy and tissue engineering applications because of their hypo-immunogenic and non-tumorigenic properties, easy availability and minimal ethical concerns. Furthermore, hWJMSCs possess unique properties of both adult mesenchymal stromal cells and embryonic stromal cells. The human umbilical cord (UC) is approximately 50-60 cm long and the existing studies in the literature have not provided information on which segment of the UC was studied...
October 7, 2016: Cytotherapy
Mei-Chi Chang, Hsiao-Hua Chang, Po-Shuan Lin, Yu-An Huang, Chiu-Po Chan, Yi-Ling Tsai, Shen-Yang Lee, Po-Yuan Jeng, Han-Yueh Kuo, Sin-Yuet Yeung, Jiiang-Huei Jeng
Transforming growth factor-β1 (TGF-β1) plays an important role in the pulpal repair and dentinogenesis. Plasminogen activation (PA) system regulates extracellular matrix turnover. In this study, we investigated the effects of TGF-β1 on PA system of dental pulp cells and its signaling pathways. Dental pulp cells were treated with different concentrations of TGF-β1. MTT assay, reverse transcription-polymerase chain reaction (RT-PCR), western blotting and enzyme-linked immunosorbant assay (ELISA) were used to detect the effect of TGF-β1 on cell viability, mRNA and protein expression of urokinase-type plasminogen activator (uPA), uPA receptor (uPAR), plasminogen activator inhibitor-1 (PAI-1) as well as their secretion...
October 9, 2016: Journal of Tissue Engineering and Regenerative Medicine
Yi Li, Xiaoli Shi, Lei Tian, Hongyu Sun, Yujing Wu, Xia Li, Jianjun Li, Yujie Wei, Xinxiao Han, Jiao Zhang, Xiaowei Jia, Rui Bai, Limin Jing, Peng Ding, Huiliang Liu, Dong Han
A schematic for the mechanism of accelerating the assembly of intercalated discs (IDs) in cardiac myocytes regulated by gold nanoparticles (AuNPs) is presented. AuNPs with local nanoscale stiffness in the substrate activate β1-integrin signaling, which mediates the activation of integrin-linked kinase (ILK) and its downstream signal kinase by stimulating expression of the transcription factors GATA4 and MEF-2c.
October 10, 2016: Advanced Materials
Aida Llucià-Valldeperas, Carolina Soler-Botija, Carolina Gálvez-Montón, Santiago Roura, Cristina Prat-Vidal, Isaac Perea-Gil, Benjamin Sanchez, Ramon Bragos, Gordana Vunjak-Novakovic, Antoni Bayes-Genis
: : Cardiac cells are subjected to mechanical and electrical forces, which regulate gene expression and cellular function. Therefore, in vitro electromechanical stimuli could benefit further integration of therapeutic cells into the myocardium. Our goals were (a) to study the viability of a tissue-engineered construct with cardiac adipose tissue-derived progenitor cells (cardiac ATDPCs) and (b) to examine the effect of electromechanically stimulated cardiac ATDPCs within a myocardial infarction (MI) model in mice for the first time...
September 29, 2016: Stem Cells Translational Medicine
Alexander Brown, Wendy S Woods, Pablo Perez-Pinera
The discovery of the prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) system and its adaptation for targeted manipulation of DNA in diverse species has revolutionized the field of genome engineering. In particular, the fusion of catalytically inactive Cas9 to any number of transcriptional activator domains has resulted in an array of easily customizable synthetic transcription factors that are capable of achieving robust, specific, and tunable activation of target gene expression within a wide variety of tissues and cells...
2017: Methods in Molecular Biology
Marco-Antonio Mendoza-Parra, Valeriya Malysheva, Mohamed Ashick Mohamed Saleem, Michele Lieb, Aurelie Godel, Hinrich Gronemeyer
Cell lineages, which shape the body architecture and specify cell functions, derive from the integration of a plethora of cell intrinsic and extrinsic signals. These signals trigger a multiplicity of decisions at several levels to modulate the activity of dynamic gene regulatory networks (GRNs), which ensure both general and cell-specific functions within a given lineage, thereby establishing cell fates. Significant knowledge about these events and the involved key drivers comes from homogeneous cell differentiation models...
September 20, 2016: Genome Research
Ira Vashisht, Tarun Pal, Hemant Sood, Rajinder S Chauhan
Transcriptional regulation of picrosides biosynthesis, the iridoid glycosides of an endangered medicinal herb, Picrorhiza kurroa, is completely unknown. P. kurroa plants obtained from natural habitat accumulate higher picrosides than in-vitro cultured plants, which necessitates identification of transcription factors (TFs) regulating their differential biosynthesis. The current study investigates complete spectrum of different TF classes in P. kurroa transcriptomes and discerns their association with picrosides biosynthesis...
September 15, 2016: Molecular Biology Reports
Wendong Ruan, Yuan Xue, Yaqi Zong, Chao Sun
In the present study, third‑generation autologous‑inactivated bone morphogenic protein 2 (BMP2), BMP4, BMP6, BMP7, BMP9 and Wnt3a lentiviral vectors were constructed and integrated into the genome of MC3T3‑E1 murine mesenchymal stem cells (MMSCs) to produce osteoinductive factor gene‑modified MMSCs. The transfection efficiency of each osteoinductive factor was then determined by detecting the expression levels of runt related transcription factor 2 (Runx2) mRNA. The cotransfection with combinations of two lentiviruses was performed, and the expression levels of bone γ‑carboxyglutamate protein and alkaline phosphatase in the MC3T3‑E1 cell culture supernatant were detected...
September 12, 2016: Molecular Medicine Reports
Abdul-Rehman Phull, Seong-Hui Eo, Qamar Abbas, Madiha Ahmed, Song Ja Kim
Chondrocytes are the exclusive cells residing in cartilage and maintain the functionality of cartilage tissue. Series of biocomponents such as different growth factors, cytokines, and transcriptional factors regulate the mesenchymal stem cells (MSCs) differentiation to chondrocytes. The number of chondrocytes and dedifferentiation are the key limitations in subsequent clinical application of the chondrocytes. Different culture methods are being developed to overcome such issues. Using tissue engineering and cell based approaches, chondrocytes offer prominent therapeutic option specifically in orthopedics for cartilage repair and to treat ailments such as tracheal defects, facial reconstruction, and urinary incontinence...
2016: BioMed Research International
Zhiye Li, Ruikai Ba, Zhifa Wang, Jianhua Wei, Yimin Zhao, Wei Wu
: : Craniofacial deformities caused by congenital defects or trauma remain challenges for clinicians, whereas current surgical interventions present limited therapeutic outcomes. Injection of bone marrow-derived mesenchymal stem cells (BMSCs) into the defect is highly desirable because such a procedure is microinvasive and grafts are more flexible to fill the lesions. However, preventing hypertrophic transition and morphological contraction remain significant challenges. We have developed an "all host derived" cell transplantation system composed of chondrocyte brick (CB)-enriched platelet-rich plasma (P) gel and BMSCs (B)...
September 14, 2016: Stem Cells Translational Medicine
Zhenyu Jin, Yuan Feng, Hongwei Liu
Previous reports have mainly focused on the behavioral responses of human periodontal ligament stem cells (hPDLSCs) in interaction with tibia bone marrow stromal cells (BMSCs). However, there is little study on the biologic features of hPDLSCs under the induction of maxilla BMSCs (M-BMSCs) at different phases of osteogenic differentiation. We hypothesized that M-BMSCs undergoing osteogenic differentiation acted on the proliferation, differentiation, and bone-forming capacity of hPDLSCs. In this paper, primary hPDLSCs and human M-BMSCs (hM-BMSCs) were expanded in vitro...
October 2016: Human Cell
Lin Wang, Chi Zhang, Chunyan Li, Michael D Weir, Ping Wang, Mark A Reynolds, Liang Zhao, Hockin H K Xu
Human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs), dental pulp stem cells (hDPSCs) and bone marrow MSCs (hBMSCs) are exciting cell sources in regenerative medicine. However, there has been no report comparing hDPSCs, hBMSCs and hiPSC-MSCs for bone engineering in an injectable calcium phosphate cement (CPC) scaffold. The objectives of this study were to: (1) develop a novel injectable CPC containing hydrogel fibers encapsulating stem cells for bone engineering, and (2) compare cell viability, proliferation and osteogenic differentiation of hDPSCs, hiPSC-MSCs from bone marrow (BM-hiPSC-MSCs) and from foreskin (FS-hiPSC-MSCs), and hBMSCs in CPC for the first time...
December 1, 2016: Materials Science & Engineering. C, Materials for Biological Applications
Yongsun Kim, Seung Hoon Lee, Byung-Jae Kang, Wan Hee Kim, Hui-Suk Yun, Oh-Kyeong Kweon
Multipotent mesenchymal stem cells (MSCs) and MSC sheets have effective potentials of bone regeneration. Composite polymer/ceramic scaffolds such as poly-ε-caprolactone (PCL)/β-tricalcium phosphate (β-TCP) are widely used to repair large bone defects. The present study investigated the in vitro osteogenic potential of canine adipose-derived MSCs (Ad-MSCs) and Ad-MSC sheets. Composite PCL/β-TCP scaffolds seeded with Ad-MSCs or wrapped with osteogenic Ad-MSC sheets (OCS) were also fabricated and their osteogenic potential was assessed following transplantation into critical-sized bone defects in dogs...
2016: Stem Cells International
Tangni Gómez-Leduc, Magalie Hervieu, Florence Legendre, Mouloud Bouyoucef, Nicolas Gruchy, Laurent Poulain, Claire de Vienne, Michel Herlicoviez, Magali Demoor, Philippe Galéra
Umbilical cord blood (UCB) is a promising alternative source of mesenchymal stem cells (MSCs), because UCB-MSCs are abundant and harvesting them is a painless non-invasive procedure. Potential clinical applications of UCB-MSCs have been identified, but their ability for chondrogenic differentiation has not yet been fully evaluated. The aim of our work was to characterize and determine the chondrogenic differentiation potential of human UCB-MSCs (hUCB-MSCs) for cartilage tissue engineering using an approach combining 3D culture in type I/III collagen sponges and chondrogenic factors...
2016: Scientific Reports
Özge Uluçkan, Erwin F Wagner
Inflammation is a physiological reaction to tissue injury, pathogen invasion and a natural response to various stress stimuli. Innate and adaptive immune cells are activated and recruited to the site of inflammation to suppress or promote inflammation. The recruitment and activation of immune cells is modulated by cytokines and chemokines, which are regulated by transcription factors, such as AP-1 (Fos/Jun), NF-kB, NFATs and STATs. Moreover, it is now appreciated that chronic inflammation can lead to systemic effects affecting the whole organism by mechanisms which are not well understood...
July 2016: Clinical and Experimental Rheumatology
Timon Hussain, Manuela Schneider, Burkhard Summer, Sebastian Strieth
BACKGROUND: Key factors for successful porous polyethylene (PPE) implantation are rapid vascularization and low inflammatory response. Dermal fibroblasts produce a variety of pro-angiogenic and immunmodulatory factors. OBJECTIVE: The aim of this tissue engineering study was to investigate whether coating PPE implants with dermal fibroblasts in vitro is sustainable in vivo and whether the kinetics of blood vessel ingrowth and immunological responses are hereby affected...
August 12, 2016: Bio-medical Materials and Engineering
Kevin Dzobo, Taegyn Turnley, Andrew Wishart, Arielle Rowe, Karlien Kallmeyer, Fiona A van Vollenstee, Nicholas E Thomford, Collet Dandara, Denis Chopera, Michael S Pepper, M Iqbal Parker
Mesenchymal stromal/stem cells (MSCs) represent an area being intensively researched for tissue engineering and regenerative medicine applications. MSCs may provide the opportunity to treat diseases and injuries that currently have limited therapeutic options, as well as enhance present strategies for tissue repair. The cellular environment has a significant role in cellular development and differentiation through cell-matrix interactions. The aim of this study was to investigate the behavior of adipose-derived MSCs (ad-MSCs) in the context of a cell-derived matrix so as to model the in vivo physiological microenvironment...
2016: International Journal of Molecular Sciences
Yang Hefeng, Hu Yu, Sun Jingjing, Guo Weihua, Tian Weidong, Li Song
OBJECTIVE: The effect of treated dentin matrix (TDM) to the proliferation and osteogenesis differentiation of bone marrow mesenchymal stem cells (BMSCs) is evaluated in vitro. METHODS: TDM leaching solution was prepared by dentine particles suffering from gradient demineralization. Human BMSCs were isolated and cultivated, and subsequently cultivated in the TDM leaching solution. The proliferation of BMSCs was detected by CCK-8. The osteogenesis-related proteins, including collagen type I (Col I) and runt-related transcription factor-2 (Runx2), were extracted and detected by Western blot after a 7-day culture...
June 2016: Hua Xi Kou Qiang Yi Xue za Zhi, Huaxi Kouqiang Yixue Zazhi, West China Journal of Stomatology
Behnam Ebrahimi
Direct reprogramming of specialized cells into other cell types has revolutionized the fields of stem cell, differentiation, and regenerative medicine. Direct reprogramming technology can convert various differentiated cell types to other fates by the forced expression of lineage-specific transcription factors. In addition to this approach, transdifferentiation can be induced in somatic cells by a method named cell-activation and signaling-directed (CASD) lineage conversion, which uses pluripotency reprogramming factors in combination with specific differentiation signals...
October 2016: Tissue & Cell
Hanqing Li, Haiwen Zhou, Xin Fu, Ran Xiao
Human embryonic stem cells (hESCs) can differentiate into all somatic lineages including stratified squamous epithelia. Thus, efficient methods are required to direct hESC differentiation to obtain a pure subpopulation for tissue engineering. The study aimed to assess the effects of retinoic acid (RA), bone morphogenetic protein-4 (BMP4), and ascorbic acid (AA) on the differentiation of hESCs into keratinocyte progenitors in vitro. The first media contained AA and BMP4; the second contained RA, AA, and BMP4; the third was commercial-defined keratinocyte serum-free medium, which was used to differentiate H9 hESCs (direct approach) or embryoid bodies (EBs) (indirect approach) into keratinocyte progenitors...
September 2016: In Vitro Cellular & Developmental Biology. Animal
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"