Read by QxMD icon Read

Fetal stem cells

Xuan Zhou, Wei Zhu, Margaret Nowicki, Shida Miao, Haitao Cui, Benjamin Holmes, Robert I Glazer, Lijie Grace Zhang
Metastasis is one of the deadliest consequences of breast cancer, with bone being one of the primary sites of occurrence. Insufficient 3D biomimetic models currently exist to replicate this process in vitro. In this study, we developed a biomimetic bone matrix using 3D bioprinting technology to investigate the interaction between breast cancer (BrCa) cells and bone stromal cells (fetal osteoblasts and human bone marrow mesenchymal stem cells (MSCs)). A tabletop stereolithography 3D bioprinter was employed to fabricate a series of bone matrices consisting of osteoblasts/MSCs encapsulated in gelatin methacrylate (GelMA) hydrogel with nanocrystalline hydroxyapatite (nHA)...
October 21, 2016: ACS Applied Materials & Interfaces
Kipp Weiskopf, Peter J Schnorr, Wendy W Pang, Mark P Chao, Akanksha Chhabra, Jun Seita, Mingye Feng, Irving L Weissman
The hematopoietic stem cell (HSC) is a multipotent stem cell that resides in the bone marrow and has the ability to form all of the cells of the blood and immune system. Since its first purification in 1988, additional studies have refined the phenotype and functionality of HSCs and characterized all of their downstream progeny. The hematopoietic lineage is divided into two main branches: the myeloid and lymphoid arms. The myeloid arm is characterized by the common myeloid progenitor and all of its resulting cell types...
October 2016: Microbiology Spectrum
Carmela Nardelli, Ilaria Granata, Laura Iaffaldano, Valeria D'Argenio, Valentina Del Monaco, Giuseppe Maria Maruotti, Daniela Omodei, Luigi Del Vecchio, Pasquale Martinelli, Francesco Salvatore, Mario Rosario Guarracino, Lucia Sacchetti, Lucio Pastore
Clinical findings and data obtained in animal models indicate that nutrient uptake and exposure to environmental agents during pregnancy may affect fetal/newborn gestational programming thereby resulting in obesity and/or obesity-related disorders in offspring. Human amniotic mesenchymal stem cells (hA-MSCs) differentiate into adipocytes, and are thus a suitable model to investigate adipocyte functions in obesity. The aim of this study was to elucidate the miRNome of hA-MSCs and its contribution to obesity in pregnancy...
October 20, 2016: Stem Cells and Development
Elsa Vera, Nazario Bosco, Lorenz Studer
Modeling late-onset disorders such as Parkinson's disease (PD) using iPSC technology remains a challenge, as current differentiation protocols yield cells with the properties of fetal-stage cells. Here, we tested whether it is possible to accelerate aging in vitro to trigger late-onset disease phenotypes in an iPSC model of PD. In order to manipulate a factor that is involved in natural aging as well as in premature aging syndromes, we used telomere shortening as an age-inducing tool. We show that shortened telomeres result in age-associated as well as potentially disease-associated phenotypes in human pluripotent stem cell (hPSC)-derived midbrain dopamine (mDA) neurons...
October 18, 2016: Cell Reports
Mario Tirone, Valentina Conti, Fabio Manenti, Pier Andrea Nicolosi, Cristina D'Orlando, Emanuele Azzoni, Silvia Brunelli
Embryonic VE-Cadherin-expressing progenitors (eVE-Cad+), including hemogenic endothelium, have been shown to generate hematopoietic stem cells and a variety of other progenitors, including mesoangioblasts, or MABs. MABs are vessel-associated progenitors with multilineage mesodermal differentiation potential that can physiologically contribute to skeletal muscle development and regeneration, and have been used in an ex vivo cell therapy setting for the treatment of muscular dystrophy. There is currently a therapeutic need for molecules that could improve the efficacy of cell therapy protocols; one such good candidate is nitric oxide...
2016: PloS One
Hicham El Costa, Jordi Gouilly, Jean-Michel Mansuy, Qian Chen, Claude Levy, Géraldine Cartron, Francisco Veas, Reem Al-Daccak, Jacques Izopet, Nabila Jabrane-Ferrat
The outbreak of the Zika Virus (ZIKV) and its association with fetal abnormalities have raised worldwide concern. However, the cellular tropism and the mechanisms of ZIKV transmission to the fetus during early pregnancy are still largely unknown. Therefore, we ex vivo modeled the ZIKV transmission at the maternal-fetal interface using organ culture from first trimester pregnancy samples. Here, we provide evidence that ZIKV strain circulating in Brazil infects and damages tissue architecture of the maternal decidua basalis, the fetal placenta and umbilical cord...
October 19, 2016: Scientific Reports
Ashley I Beyer, Marcus O Muench
Immunodeficient mice play a critical role in hematology research as in vivo models of hematopoiesis and immunology. Multiple strains have been developed, but hematopoietic stem cell engraftment and immune reconstitution have not been methodically compared among them. Four mouse strains were transplanted with human fetal bone marrow or adult peripheral blood CD34+ cells: NSG, NSG-3GS, hSCF-Tg-NSG and hSIRPα-DKO. Hematopoietic engraftment in the bone marrow, blood, spleen and liver was evaluated by flow cytometry 12 weeks after transplant...
October 19, 2016: Stem Cells and Development
Yimei Dai, Lu Zhu, Zhibin Huang, Minyu Zhou, Wan Jin, Wei Liu, Mengchang Xu, Tao Yu, Yiyue Zhang, Zilong Wen, Wangjun Liao, Wenqing Zhang
In vertebrates, myeloid cells arise from multiple waves of development: the first or embryonic wave of myelopoiesis initiates early from non-hematopoietic stem cell (HSC) precursors and gives rise to myeloid cells transiently during early development; whereas the second or adult wave of myelopoiesis emerges later from HSCs and produces myeloid cells continually during fetal and adult life. In the past decades, a great deal has been learnt about the development of myeloid cells from adult myelopoiesis, yet the genetic network governing embryonic myelopoiesis remains poorly defined...
September 3, 2016: Journal of Genetics and Genomics, Yi Chuan Xue Bao
I Louveau, M-H Perruchot, M Bonnet, F Gondret
Both white and brown adipose tissues are recognized to be differently involved in energy metabolism and are also able to secrete a variety of factors called adipokines that are involved in a wide range of physiological and metabolic functions. Brown adipose tissue is predominant around birth, except in pigs. Irrespective of species, white adipose tissue has a large capacity to expand postnatally and is able to adapt to a variety of factors. The aim of this review is to update the cellular and molecular mechanisms associated with pre- and postnatal adipose tissue development with a special focus on pigs and ruminants...
November 2016: Animal: An International Journal of Animal Bioscience
Maryam Kaviani, Negar Azarpira, Mohammad Hossein Karimi, Ismail Al-Abdullah
Cell-based therapies suggest novel treatments to overcome the complication of the current therapeutic approaches in diabetes mellitus type 1. Replacement of the destroyed pancreatic islet β-cells by appropriate alternative cells needs an efficient approach to differentiate the cells into viable and functional insulin producing cells. Small non-coding RNA molecules, MicroRNAs (miRNA), have critical roles in post-transcriptional regulation of gene expression. Therefore, they can direct the cells toward β-cell like cells and control islet β-cell development...
October 15, 2016: Cell Biology International
Jonathan C Niclis, Carlos W Gantner, Walaa F Alsanie, Stuart J McDougall, Chris R Bye, Andrew G Elefanty, Edouard G Stanley, John M Haynes, Colin W Pouton, Lachlan H Thompson, Clare L Parish
: : Recent studies have shown evidence for the functional integration of human pluripotent stem cell (hPSC)-derived ventral midbrain dopamine (vmDA) neurons in animal models of Parkinson's disease. Although these cells present a sustainable alternative to fetal mesencephalic grafts, a number of hurdles require attention prior to clinical translation. These include the persistent use of xenogeneic reagents and challenges associated with scalability and storage of differentiated cells. In this study, we describe the first fully defined feeder- and xenogeneic-free protocol for the generation of vmDA neurons from hPSCs and utilize two novel reporter knock-in lines (LMX1A-eGFP and PITX3-eGFP) for in-depth in vitro and in vivo tracking...
October 14, 2016: Stem Cells Translational Medicine
Yohei Kawano, Georg Petkau, Ingrid Wolf, Julia Tornack, Fritz Melchers
Long-term proliferating, DH JH -rearranged mouse precursor B-cell lines have previously been established in serum- and IL-7-containing media from fetal liver, but not from bone marrow. Serum and stromal cells expose these pre-B cells to undefined factors, hampering accurate analyses of ligand-dependent signalling, which controls pre-B cell proliferation, survival, residence and migration. Here, we describe a novel serum-free, stromal cell-free culture system, which allows to establish and maintain pre-B cells not only from fetal liver, but also from bone marrow with practically identical efficiencies in proliferation, cloning and differentiation...
October 14, 2016: European Journal of Immunology
Azadeh Esmaeli, Mojgan Moshrefi, Ali Shamsara, Seyed Hasan Eftekhar-Vaghefi, Seyed Noureddin Nematollahi-Mahani
BACKGROUND: Fetal bovine serum (FBS) is widely used in cell culture laboratories, risk of zoonotic infections and allergic side effects create obstacles for its use in clinical trials. Therefore, an alternative supplement with proper inherent growth-promoting activities is demanded. OBJECTIVE: To find FBS substitute, we tested human umbilical cord blood serum (hUCS) for proliferation of human umbilical cord matrix derived mesenchymal stem cells (hUC-MSCs) and human bone marrow-derived mesenchymal cells (hBM-MSCs)...
September 2016: International Journal of Reproductive Biomedicine (Yazd, Iran)
Lei Lei, Allan C Spradling
Lineage analysis is widely used because it provides a very powerful tool for characterizing the developmental behavior of the cells in vivo. In this chapter, we describe a particularly informative variant of lineage analysis that we term "single-cell lineage analysis". As in traditional lineage analysis, the method employs a Tamoxifen (Tmx)-inducible CAGCreER mouse line, which is crossed to an R26R reporter line that can be activated by Cre-mediated DNA recombination. However, instead of driving CreER at a high level within a subset of cells defined by a particular promoter, CreER is driven with a generic promoter that is active in essentially all cells throughout the lifespan of the mouse...
2017: Methods in Molecular Biology
Ramiro Olivera, Lucia Natalia Moro, Roberto Jordan, Carlos Luzzani, Santiago Miriuka, Martin Radrizzani, F Xavier Donadeu, Gabriel Vichera
The demand for equine cloning as a tool to preserve high genetic value is growing worldwide; however, nuclear transfer efficiency is still very low. To address this issue, we first evaluated the effects of time from cell fusion to activation (<1h, n = 1261; 1-2h, n = 1773; 2-3h, n = 1647) on in vitro and in vivo development of equine embryos generated by cloning. Then, we evaluated the effects of using different nuclear donor cell types in two successive experiments: I) induced pluripotent stem cells (iPSCs) vs...
2016: PloS One
Pia Rantakari, Norma Jäppinen, Emmi Lokka, Elias Mokkala, Heidi Gerke, Emilia Peuhu, Johanna Ivaska, Kati Elima, Kaisa Auvinen, Marko Salmi
Macrophages are required for normal embryogenesis, tissue homeostasis and immunity against microorganisms and tumours. Adult tissue-resident macrophages largely originate from long-lived, self-renewing embryonic precursors and not from haematopoietic stem-cell activity in the bone marrow. Although fate-mapping studies have uncovered a great amount of detail on the origin and kinetics of fetal macrophage development in the yolk sac and liver, the molecules that govern the tissue-specific migration of these cells remain completely unknown...
October 12, 2016: Nature
Nolan B Skop, Frances Calderon, Cheul H Cho, Chirag D Gandhi, Steven W Levison
Tissue engineering using stem cells is widely used to repair damaged tissues in diverse biological systems; however, this approach has met with less success in regenerating the central nervous system (CNS). In this study we optimized and characterized the surface chemistry of chitosan-based scaffolds for CNS repair. To maintain radial glial cell (RGC) character of primitive neural precursors, fibronectin was adsorbed to chitosan. The chitosan was further modified by covalently linking heparin using genipin, which then served as a linker to immobilize fibroblast growth factor-2 (FGF-2), creating a multifunctional film...
October 2016: Journal of Tissue Engineering and Regenerative Medicine
Jairo A Diaz, Mauricio F Murillo, Jhonan A Mendoza, Ana M Barreto, Lina S Poveda, Lina K Sanchez, Laura C Poveda, Katherine T Mora
Emergent biological responses develop via unknown processes dependent on physical collision. In hypoxia, when the tissue architecture collapses but the geometric core is stable, actin cytoskeleton filament components emerge, revealing a hidden internal order that identifies how each molecule is reassembled into the original mold, using one common connection, i.e., a fractal self-similarity that guides the system from the beginning in reverse metamorphosis, with spontaneous self-assembly of past forms that mimics an embryoid phenotype...
2016: American Journal of Stem Cells
Alana M Chin, Yu-Hwai Tsai, Stacy R Finkbeiner, Melinda S Nagy, Emily M Walker, Nicole J Ethen, Bart O Williams, Michele A Battle, Jason R Spence
Much of our understanding about how intestinal stem and progenitor cells are regulated comes from studying the late fetal stages of development and the adult intestine. In this light, little is known about intestine development prior to the formation of stereotypical villus structures with columnar epithelium, a stage when the epithelium is pseudostratified and appears to be a relatively uniform population of progenitor cells with high proliferative capacity. Here, we investigated a role for WNT/β-CATENIN signaling during the pseudostratified stages of development (E13...
October 6, 2016: Stem Cell Reports
Young Me Yoon, Kelsie J Storm, Ashley N Kamimae-Lanning, Natalya A Goloviznina, Peter Kurre
Our mechanistic understanding of Fanconi anemia (FA) pathway function in hematopoietic stem and progenitor cells (HSPCs) owes much to their role in experimentally induced DNA crosslink lesion repair. In bone marrow HSPCs, unresolved stress confers p53-dependent apoptosis and progressive cell attrition. The role of FA proteins during hematopoietic development, in the face of physiological replicative demand, remains elusive. Here, we reveal a fetal HSPC pool in Fancd2(-/-) mice with compromised clonogenicity and repopulation...
October 6, 2016: Stem Cell Reports
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"