keyword
MENU ▼
Read by QxMD icon Read
search

SMN2

keyword
https://www.readbyqxmd.com/read/29327642/effects-of-arm-cycling-exercise-in-spinal-muscular-atrophy-type-ii-patients-a-pilot-study
#1
Gamze Bora, Şulenur Subaşı-Yıldız, Ayşe Yeşbek-Kaymaz, Numan Bulut, İpek Alemdaroğlu, Öznur Tunca-Yılmaz, Haluk Topaloğlu, Aynur Ayşe Karaduman, Hayat Erdem-Yurter
Exercise studies in neuromuscular diseases like spinal muscular atrophy (SMA), a devastating disease caused by survival of motor neuron 1 ( SMN1) gene mutations, are drawing attention due to its beneficial effects. In this study, we presented a constructed arm cycling exercise protocol and evaluated the benefits on SMA patients. Five SMA type II patients performed 12 weeks of supervised arm cycling exercise. The physical functions were evaluated together with the SMN2 copy numbers, SMN protein levels, insulin-like growth factor 1(IGF1) and binding protein 3 (IGFBP3) levels...
January 1, 2018: Journal of Child Neurology
https://www.readbyqxmd.com/read/29316633/investigation-of-new-morpholino-oligomers-to-increase-survival-motor-neuron-protein-levels-in-spinal-muscular-atrophy
#2
Agnese Ramirez, Sebastiano G Crisafulli, Mafalda Rizzuti, Nereo Bresolin, Giacomo P Comi, Stefania Corti, Monica Nizzardo
Spinal muscular atrophy (SMA) is an autosomal-recessive childhood motor neuron disease and the main genetic cause of infant mortality. SMA is caused by deletions or mutations in the survival motor neuron 1 (SMN1) gene, which results in SMN protein deficiency. Only one approved drug has recently become available and allows for the correction of aberrant splicing of the paralogous SMN2 gene by antisense oligonucleotides (ASOs), leading to production of full-length SMN protein. We have already demonstrated that a sequence of an ASO variant, Morpholino (MO), is particularly suitable because of its safety and efficacy profile and is both able to increase SMN levels and rescue the murine SMA phenotype...
January 6, 2018: International Journal of Molecular Sciences
https://www.readbyqxmd.com/read/29208343/single-center-experience-with-intrathecal-administration-of-nusinersen-in-children-with-spinal-muscular-atrophy-type-1
#3
Astrid Pechmann, Thorsten Langer, Sabine Wider, Janbernd Kirschner
BACKGROUND: Spinal muscular atrophy (SMA) is a neuromuscular disorder mainly characterized by proximal muscle weakness. There have been enormous advances in therapeutic development with the possibility to influence the clinical course of the disease. Nusinersen is the first approved drug to treat SMA. It is administered intrathecally and acts as splicing modifier of the SMN2 gene. METHODS: Lumbar punctures were performed using a standardized protocol. To evaluate safety and feasibility of the intrathecal treatment, vital signs and the need for sedation, analgesia or mechanical ventilation during the procedure were monitored...
November 21, 2017: European Journal of Paediatric Neurology: EJPN
https://www.readbyqxmd.com/read/29187847/a-multilayered-control-of-the-human-survival-motor-neuron-gene-expression-by-alu-elements
#4
REVIEW
Eric W Ottesen, Joonbae Seo, Natalia N Singh, Ravindra N Singh
Humans carry two nearly identical copies of Survival Motor Neuron gene: SMN1 and SMN2. Mutations or deletions of SMN1, which codes for SMN, cause spinal muscular atrophy (SMA), a leading genetic disease associated with infant mortality. Aberrant expression or localization of SMN has been also implicated in other pathological conditions, including male infertility, inclusion body myositis, amyotrophic lateral sclerosis and osteoarthritis. SMN2 fails to compensate for the loss of SMN1 due to skipping of exon 7, leading to the production of SMNΔ7, an unstable protein...
2017: Frontiers in Microbiology
https://www.readbyqxmd.com/read/29174525/clinical-phenotypes-and-trajectories-of-disease-progression-in-type-1-spinal-muscular-atrophy
#5
Roberto De Sanctis, Marika Pane, Giorgia Coratti, Concetta Palermo, Daniela Leone, Maria Carmela Pera, Emanuela Abiusi, Stefania Fiori, Nicola Forcina, Lavinia Fanelli, Simona Lucibello, Elena S Mazzone, Francesco Danilo Tiziano, Eugenio Mercuri
The advent of clinical trials has highlighted the need for natural history studies reporting disease progression in type 1 spinal muscular atrophy. The aim of this study was to assess functional changes using the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND) scale in a cohort of type 1 infants. Nutritional and respiratory longitudinal data were also recorded. Patients were classified according to the severity of the phenotype and age of onset. SMN2 copies were also assessed...
October 10, 2017: Neuromuscular Disorders: NMD
https://www.readbyqxmd.com/read/29167380/self-oligomerization-regulates-stability-of-survival-motor-neuron-smn-protein-isoforms-by-sequestering-an-scf-slmb-degron
#6
Kelsey M Gray, Kevin A Kaifer, David Baillat, Ying Wen, Thomas R Bonacci, Allison D Ebert, Amanda C Raimer, Ashlyn M Spring, Sara Ten Have, Jacqueline J Glascock, Kushol Gupta, Gregory D Van Duyne, Michael J Emanuele, Angus I Lamond, Eric J Wagner, Christian L Lorson, A Gregory Matera
Spinal muscular atrophy (SMA) is caused by homozygous mutations in human SMN1 Expression of a duplicate gene (SMN2) primarily results in skipping of exon 7 and production of an unstable protein isoform, SMNΔ7. Although SMN2 exon skipping is the principal contributor to SMA severity, mechanisms governing stability of SMN isoforms are poorly understood. We used a Drosophila model system and label-free proteomics to identify the SCF(Slmb) ubiquitin E3 ligase complex as a novel SMN binding partner. SCF(Slmb) interacts with a phospho-degron embedded within the human and fruitfly SMN YG-box oligomerization domains...
November 22, 2017: Molecular Biology of the Cell
https://www.readbyqxmd.com/read/29149772/natural-history-of-infantile-onset-spinal-muscular-atrophy
#7
Stephen J Kolb, Christopher S Coffey, Jon W Yankey, Kristin Krosschell, W David Arnold, Seward B Rutkove, Kathryn J Swoboda, Sandra P Reyna, Ai Sakonju, Basil T Darras, Richard Shell, Nancy Kuntz, Diana Castro, Julie Parsons, Anne M Connolly, Claudia A Chiriboga, Craig McDonald, W Bryan Burnette, Klaus Werner, Mathula Thangarajh, Perry B Shieh, Erika Finanger, Merit E Cudkowicz, Michelle M McGovern, D Elizabeth McNeil, Richard Finkel, Susan T Iannaccone, Edward Kaye, Allison Kingsley, Samantha R Renusch, Vicki L McGovern, Xueqian Wang, Phillip G Zaworski, Thomas W Prior, Arthur H M Burghes, Amy Bartlett, John T Kissel
OBJECTIVE: Infantile-onset spinal muscular atrophy (SMA) is the most common genetic cause of infant mortality, typically resulting in death prior to age 2. Clinical trials in this population require an understanding of disease progression and identification of meaningful biomarkers to hasten therapeutic development and predict outcomes. METHODS: A longitudinal, multi-center, prospective natural history study enrolled 26 SMA infants, and 27 control infants less than six months of age...
November 17, 2017: Annals of Neurology
https://www.readbyqxmd.com/read/29133793/binding-to-smn2-pre-mrna-protein-complex-elicits-specificity-for-small-molecule-splicing-modifiers
#8
Manaswini Sivaramakrishnan, Kathleen D McCarthy, Sébastien Campagne, Sylwia Huber, Sonja Meier, Angélique Augustin, Tobias Heckel, Hélène Meistermann, Melanie N Hug, Pascale Birrer, Ahmed Moursy, Sarah Khawaja, Roland Schmucki, Nikos Berntenis, Nicolas Giroud, Sabrina Golling, Manuel Tzouros, Balazs Banfai, Gonzalo Duran-Pacheco, Jens Lamerz, Ying Hsiu Liu, Thomas Luebbers, Hasane Ratni, Martin Ebeling, Antoine Cléry, Sergey Paushkin, Adrian R Krainer, Frédéric H-T Allain, Friedrich Metzger
Small molecule splicing modifiers have been previously described that target the general splicing machinery and thus have low specificity for individual genes. Several potent molecules correcting the splicing deficit of the SMN2 (survival of motor neuron 2) gene have been identified and these molecules are moving towards a potential therapy for spinal muscular atrophy (SMA). Here by using a combination of RNA splicing, transcription, and protein chemistry techniques, we show that these molecules directly bind to two distinct sites of the SMN2 pre-mRNA, thereby stabilizing a yet unidentified ribonucleoprotein (RNP) complex that is critical to the specificity of these small molecules for SMN2 over other genes...
November 14, 2017: Nature Communications
https://www.readbyqxmd.com/read/29103974/optimization-of-a-series-of-heterocycles-as-survival-motor-neuron-gene-transcription-enhancers
#9
Sungwoon Choi, Alyssa N Calder, Eliza H Miller, Kierstyn P Anderson, Dawid K Fiejtek, Anne Rietz, Hongxia Li, Jonathan J Cherry, Kevin M Quist, Xuechao Xing, Marcie A Glicksman, Gregory D Cuny, Christian L Lorson, Elliot A Androphy, Kevin J Hodgetts
Spinal muscular atrophy (SMA) is a neurodegenerative disorder that results from mutations in the SMN1 gene, leading to survival motor neuron (SMN) protein deficiency. One therapeutic strategy for SMA is to identify compounds that enhance the expression of the SMN2 gene, which normally only is a minor contributor to functional SMN protein production, but which is unaffected in SMA. A recent high-throughput screening campaign identified a 3,4-dihydro-4-phenyl-2(1H)-quinolinone derivative (2) that increases the expression of SMN2 by 2-fold with an EC50 = 8...
October 26, 2017: Bioorganic & Medicinal Chemistry Letters
https://www.readbyqxmd.com/read/29091570/nusinersen-versus-sham-control-in-infantile-onset-spinal-muscular-atrophy
#10
RANDOMIZED CONTROLLED TRIAL
Richard S Finkel, Eugenio Mercuri, Basil T Darras, Anne M Connolly, Nancy L Kuntz, Janbernd Kirschner, Claudia A Chiriboga, Kayoko Saito, Laurent Servais, Eduardo Tizzano, Haluk Topaloglu, Már Tulinius, Jacqueline Montes, Allan M Glanzman, Kathie Bishop, Z John Zhong, Sarah Gheuens, C Frank Bennett, Eugene Schneider, Wildon Farwell, Darryl C De Vivo
BACKGROUND: Spinal muscular atrophy is an autosomal recessive neuromuscular disorder that is caused by an insufficient level of survival motor neuron (SMN) protein. Nusinersen is an antisense oligonucleotide drug that modifies pre-messenger RNA splicing of the SMN2 gene and thus promotes increased production of full-length SMN protein. METHODS: We conducted a randomized, double-blind, sham-controlled, phase 3 efficacy and safety trial of nusinersen in infants with spinal muscular atrophy...
November 2, 2017: New England Journal of Medicine
https://www.readbyqxmd.com/read/29066780/survival-motor-neuron-protein-is-released-from-cells-in-exosomes-a-potential-biomarker-for-spinal-muscular-atrophy
#11
Leslie A Nash, Emily R McFall, Amanda M Perozzo, Maddison Turner, Kathy L Poulin, Yves De Repentigny, Joseph K Burns, Hugh J McMillan, Jodi Warman Chardon, Dylan Burger, Rashmi Kothary, Robin J Parks
Spinal muscular atrophy (SMA) is caused by homozygous mutation of the survival motor neuron 1 (SMN1) gene. Disease severity inversely correlates to the amount of SMN protein produced from the homologous SMN2 gene. We show that SMN protein is naturally released in exosomes from all cell types examined. Fibroblasts from patients or a mouse model of SMA released exosomes containing reduced levels of SMN protein relative to normal controls. Cells overexpressing SMN protein released exosomes with dramatically elevated levels of SMN protein...
October 24, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28983837/treatment-advances-in-spinal-muscular-atrophy
#12
REVIEW
Diana Bharucha-Goebel, Petra Kaufmann
PURPOSE OF REVIEW: Spinal muscular atrophy (SMA) is a genetic disorder of motor neurons in the anterior horns of the spinal cord and brainstem that results in muscle atrophy and weakness. SMA is an autosomal recessive disease linked to deletions of the SMN1 gene on chromosome 5q. Humans have a duplicate gene (SMN2) whose product can mitigate disease severity, leading to the variability in severity and age of onset of disease, and is therefore a target for drug development. RECENT FINDINGS: Advances in preclinical and clinical trials have paved the way for novel therapeutic options for SMA patients, including many currently in clinical trials...
October 6, 2017: Current Neurology and Neuroscience Reports
https://www.readbyqxmd.com/read/28981879/activation-of-a-cryptic-5-splice-site-reverses-the-impact-of-pathogenic-splice-site-mutations-in-the-spinal-muscular-atrophy-gene
#13
Natalia N Singh, José Bruno Del Rio-Malewski, Diou Luo, Eric W Ottesen, Matthew D Howell, Ravindra N Singh
Spinal muscular atrophy (SMA) is caused by deletions or mutations of the Survival Motor Neuron 1 (SMN1) gene coupled with predominant skipping of SMN2 exon 7. The only approved SMA treatment is an antisense oligonucleotide that targets the intronic splicing silencer N1 (ISS-N1), located downstream of the 5' splice site (5'ss) of exon 7. Here, we describe a novel approach to exon 7 splicing modulation through activation of a cryptic 5'ss (Cr1). We discovered the activation of Cr1 in transcripts derived from SMN1 that carries a pathogenic G-to-C mutation at the first position (G1C) of intron 7...
September 15, 2017: Nucleic Acids Research
https://www.readbyqxmd.com/read/28977438/spinal-muscular-atrophy-antisense-oligonucleotide-therapy-opens-the-door-to-an-integrated-therapeutic-landscape
#14
Matthew J A Wood, Kevin Talbot, Melissa Bowerman
Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder characterized by loss of spinal cord motor neurons, muscle atrophy and infantile death or severe disability. It is caused by severe reduction of the ubiquitously expressed survival motor neuron (SMN) protein, owing to loss of the SMN1 gene. This would be completely incompatible with survival without the presence of a quasi-identical duplicated gene, SMN2, specific to humans. SMN2 harbours a silent point mutation that favours the production of transcripts lacking exon 7 and a rapidly degraded non-functional SMNΔ7 protein, but from which functional full length SMN protein is produced at very low levels (∼10%)...
October 1, 2017: Human Molecular Genetics
https://www.readbyqxmd.com/read/28962115/application-of-urine-cells-in-drug-intervention-for-spinal-muscular-atrophy
#15
Qi-Jie Zhang, Xiang Lin, Jin-Jing Li, Ying-Qian Lu, Xin-Xin Guo, En-Lin Dong, Miao Zhao, Jin He, Ning Wang, Wan-Jin Chen
Spinal muscular atrophy (SMA) is a lethal childhood neurodegenerative disorder that is caused by the homozygous deletion of survival motor neuron 1 (SMN1). To date, no effective treatments are available. In the current study, urine cells taken from SMA patients were cultured and the application of patient-derived urine cells was determined in drug intervention. A total of 13 SMA patient-derived urine cell lines and 40 control cell lines were established. SMN was highly expressed in the nucleus and cytoplasm...
September 2017: Experimental and Therapeutic Medicine
https://www.readbyqxmd.com/read/28945765/in-vitro-and-in-vivo-effects-of-2-4-diaminoquinazoline-inhibitors-of-the-decapping-scavenger-enzyme-dcps-context-specific-modulation-of-smn-transcript-levels
#16
Jonathan J Cherry, Christine J DiDonato, Elliot J Androphy, Alessandro Calo, Kyle Potter, Sara K Custer, Sarah Du, Timothy L Foley, Ariamala Gopalsamy, Emily J Reedich, Susana M Gordo, William Gordon, Natalie Hosea, Lyn H Jones, Daniel K Krizay, Gregory LaRosa, Hongxia Li, Sachin Mathur, Carol A Menard, Paraj Patel, Rebeca Ramos-Zayas, Anne Rietz, Haojing Rong, Baohong Zhang, Michael A Tones
C5-substituted 2,4-diaminoquinazoline inhibitors of the decapping scavenger enzyme DcpS (DAQ-DcpSi) have been developed for the treatment of spinal muscular atrophy (SMA), which is caused by genetic deficiency in the Survival Motor Neuron (SMN) protein. These compounds are claimed to act as SMN2 transcriptional activators but data underlying that claim are equivocal. In addition it is unclear whether the claimed effects on SMN2 are a direct consequence of DcpS inhibitor or might be a consequence of lysosomotropism, which is known to be neuroprotective...
2017: PloS One
https://www.readbyqxmd.com/read/28899515/the-water-extract-of-liuwei-dihuang-possesses-multi-protective-properties-on-neurons-and-muscle-tissue-against-deficiency-of-survival-motor-neuron-protein
#17
Yu-Ting Tseng, Yuh-Jyh Jong, Wei-Fang Liang, Fang-Rong Chang, Yi-Ching Lo
BACKGROUND: Deficiency of survival motor neuron (SMN) protein, which is encoded by the SMN1 and SMN2 genes, induces widespread splicing defects mainly in spinal motor neurons, and leads to spinal muscular atrophy (SMA). Currently, there is no effective treatment for SMA. Liuwei dihuang (LWDH), a traditional Chinese herbal formula, possesses multiple therapeutic benefits against various diseases via modulation of the nervous, immune and endocrine systems. Previously, we demonstrated water extract of LWDH (LWDH-WE) protects dopaminergic neurons and improves motor activity in models of Parkinson's disease...
October 15, 2017: Phytomedicine: International Journal of Phytotherapy and Phytopharmacology
https://www.readbyqxmd.com/read/28799578/nusinersen-antisense-oligonucleotide-to-increase-smn-protein-production-in-spinal-muscular-atrophy
#18
REVIEW
D M Paton
Patients with spinal muscular atrophy (SMA) have an autosomal recessive disease that limits their ability to produce survival motor neuron (SMN) protein in the CNS resulting in progressive wasting of voluntary muscles. Detailed studies over several years have demonstrated that phosphorothioate and 2'-O-methoxyethyl- modified antisense oligonucleotides (ASOs) targeting the ISS-N1 site increase SMN2 exon 7 inclusion, thus increasing levels of SMN protein in a dose- and time-dependent manner in liver, kidney and skeletal muscle, and CNS tissues only when administered intrathecally...
June 2017: Drugs of Today
https://www.readbyqxmd.com/read/28797588/longitudinal-assessments-in-discordant-twins-with-sma
#19
Marika Pane, Leonardo Lapenta, Emanuela Abiusi, Roberto de Sanctis, Marco Luigetti, Concetta Palermo, Domiziana Ranalli, Stefania Fiori, Francesco Danilo Tiziano, Eugenio Mercuri
We report longitudinal clinical and neurophysiological assessments in twins affected by spinal muscular atrophy (SMA) with discordant phenotypes. The boy had the homozygous deletion of SMN1, a typical type 1 SMA course, and died at the age of eight months. His twin sister, asymptomatic at the time of the diagnosis in her brother, had the same genetic defect but she developed clinical and electrophysiological signs of type 2 SMA. The reduction of tendon reflexes was the first clinical sign at the age of 4 months, followed within few weeks, by a mild decrement in the amplitude of the compound motor action potentials...
July 8, 2017: Neuromuscular Disorders: NMD
https://www.readbyqxmd.com/read/28775379/tia1-is-a-gender-specific-disease-modifier-of-a-mild-mouse-model-of-spinal-muscular-atrophy
#20
Matthew D Howell, Eric W Ottesen, Natalia N Singh, Rachel L Anderson, Joonbae Seo, Senthilkumar Sivanesan, Elizabeth M Whitley, Ravindra N Singh
Spinal muscular atrophy (SMA) is caused by deletions or mutations of Survival Motor Neuron 1 (SMN1) gene. The nearly identical SMN2 cannot compensate for SMN1 loss due to exon 7 skipping. The allele C (C (+/+)) mouse recapitulates a mild SMA-like phenotype and offers an ideal system to monitor the role of disease-modifying factors over a long time. T-cell-restricted intracellular antigen 1 (TIA1) regulates SMN exon 7 splicing. TIA1 is reported to be downregulated in obese patients, although it is not known if the effect is gender-specific...
August 3, 2017: Scientific Reports
keyword
keyword
42503
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"