keyword
MENU ▼
Read by QxMD icon Read
search

SMN2

keyword
https://www.readbyqxmd.com/read/28711173/presymptomatic-diagnosis-of-spinal-muscular-atrophy-through-newborn-screening
#1
Yin-Hsiu Chien, Shu-Chuan Chiang, Wen-Chin Weng, Ni-Chung Lee, Ching-Jie Lin, Wu-Shiun Hsieh, Wang-Tso Lee, Yuh-Jyh Jong, Tsang-Ming Ko, Wuh-Liang Hwu
OBJECTIVE: To demonstrate the feasibility of presymptomatic diagnosis of spinal muscular atrophy (SMA) through newborn screening (NBS). STUDY DESIGN: We performed a screening trial to assess all newborns who underwent routine newborn metabolic screening at the National Taiwan University Hospital newborn screening center between November 2014 and September 2016. A real-time polymerase chain reaction (RT-PCR) genotyping assay for the SMN1/SMN2 intron 7 c.888+100A/G polymorphism was performed to detect homozygous SMN1 deletion using dried blood spot (DBS) samples...
July 12, 2017: Journal of Pediatrics
https://www.readbyqxmd.com/read/28684086/modifier-genes-moving-from-pathogenesis-to-therapy
#2
Edward R B McCabe
This commentary will focus on how we can use our knowledge about the complexity of human disease and its pathogenesis to identify novel approaches to therapy. We know that even for single gene Mendelian disorders, patients with identical mutations often have different presentations and outcomes. This lack of genotype-phenotype correlation led us and others to examine the roles of modifier genes in the context of biological networks. These investigations have utilized vertebrate and invertebrate model organisms...
May 30, 2017: Molecular Genetics and Metabolism
https://www.readbyqxmd.com/read/28666123/splicing-correcting-therapy-for-sma
#3
Lili Wan, Gideon Dreyfuss
Spinal muscular atrophy (SMA) is caused by deficiency of SMN protein, which is crucial for spliceosome subunits biogenesis. Most SMA patients have SMN1 deletions, leaving SMN2 as sole SMN source; however, a C→T substitution converts an exonic-splicing enhancer (ESE) to a silencer (ESS), causing frequent exon7 skipping in SMN2 pre-mRNA and yielding a truncated protein. Antisense treatment to SMN2 intron7-splicing silencer (ISS) improves SMN expression and motor function. To view this Bench to Bedside, open or download the PDF...
June 29, 2017: Cell
https://www.readbyqxmd.com/read/28662219/the-effects-of-c5-substituted-2-4-diaminoquinazolines-on-selected-transcript-expression-in-spinal-muscular-atrophy-cells
#4
Cinsley Gentillon, Andrew J Connell, Ryan W Kirk, Matthew E R Butchbach
C5-substituted 2,4-diaminoquinazolines (2,4-DAQs) ameliorate disease severity in SMA mice. It is uncertain, however, that these compounds increase SMN protein levels in vivo even though they were identified as activators of the SMN2 promoter. These compounds also regulate the expression of other transcripts in neuroblastoma cells. In this study, we investigate the mechanism by which the 2,4-DAQs regulate the expression of SMN2 as well as other targets. D156844, D158872, D157161 and D157495 (RG3039) increased SMN2 promoter-driven reporter gene activity by at least 3-fold in NSC-34 cells...
2017: PloS One
https://www.readbyqxmd.com/read/28648462/cyclic-tetrapeptide-hdac-inhibitors-as-potential-therapeutics-for-spinal-muscular-atrophy-screening-with-ipsc-derived-neuronal-cells
#5
Jiun-I Lai, Luke J Leman, Sherman Ku, Chris J Vickers, Christian A Olsen, Ana Montero, M Reza Ghadiri, Joel M Gottesfeld
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder that is caused by inactivating mutations in the Survival of motor neuron 1 (SMN1) gene, resulting in decreased SMN protein expression. Humans possess a paralog gene, SMN2, which contains a splicing defect in exon 7 leading to diminished expression of full-length, fully functional SMN protein. Increasing SMN2 expression has been a focus of therapeutic development for SMA. Multiple studies have reported the efficacy of histone deacetylase inhibitors (HDACi) in this regard...
August 1, 2017: Bioorganic & Medicinal Chemistry Letters
https://www.readbyqxmd.com/read/28644430/the-clinical-landscape-for-sma-in-a-new-therapeutic-era
#6
REVIEW
K Talbot, E F Tizzano
Despite significant advances in basic research, the treatment of degenerative diseases of the nervous system remains one of the greatest challenges for translational medicine. The childhood onset motor neuron disorder spinal muscular atrophy (SMA) has been viewed as one of the more tractable targets for molecular therapy, due to a detailed understanding of the molecular genetic basis of the disease. In SMA, inactivating mutations in the SMN1 gene can be partially compensated for by limited expression of SMN protein from a variable number of copies of the SMN2 gene, which provides both a molecular explanation for phenotypic severity and a target for therapy...
June 23, 2017: Gene Therapy
https://www.readbyqxmd.com/read/28639617/gene-therapy-for-spinomuscular-atrophy-a-biomedical-advance-a-missed-opportunity-for-more-equitable-drug-pricing
#7
T Friedmann
An experimental approach for gene therapy of spinomuscular atrophy has been reported to prevent development of the neuromuscular features of this lethal and previously untreatable disorder. The approach involves treatment of patients suffering from SMN1-associated infantile form of the disease with a splice-switching antisense oligonucleotide (ASO) that corrects aberrant splicing of the nearly identical SMN2 gene to allow the generation of functional SMN protein, thereby mitigating the development of the disease...
June 22, 2017: Gene Therapy
https://www.readbyqxmd.com/read/28624227/efficient-smn-rescue-following-subcutaneous-tricyclo-dna-antisense-oligonucleotide-treatment
#8
Valérie Robin, Graziella Griffith, John-Paul L Carter, Christian J Leumann, Luis Garcia, Aurélie Goyenvalle
Spinal muscular atrophy (SMA) is a recessive disease caused by mutations in the SMN1 gene, which encodes the protein survival motor neuron (SMN), whose absence dramatically affects the survival of motor neurons. In humans, the severity of the disease is lessened by the presence of a gene copy, SMN2. SMN2 differs from SMN1 by a C-to-T transition in exon 7, which modifies pre-mRNA splicing and prevents successful SMN synthesis. Splice-switching approaches using antisense oligonucleotides (AONs) have already been shown to correct this SMN2 gene transition, providing a therapeutic avenue for SMA...
June 16, 2017: Molecular Therapy. Nucleic Acids
https://www.readbyqxmd.com/read/28623256/lna-dna-mixmer-based-antisense-oligonucleotides-correct-alternative-splicing-of-the%C3%A2-smn2-gene-and-restore-smn-protein-expression-in-type-1-sma-fibroblasts
#9
Aleksander Touznik, Rika Maruyama, Kana Hosoki, Yusuke Echigoya, Toshifumi Yokota
Spinal muscular atrophy (SMA) is an autosomal recessive disorder affecting motor neurons, and is currently the most frequent genetic cause of infant mortality. SMA is caused by a loss-of-function mutation in the survival motor neuron 1 (SMN1) gene. SMN2 is an SMN1 paralogue, but cannot compensate for the loss of SMN1 since exon 7 in SMN2 mRNA is excluded (spliced out) due to a single C-to-T nucleotide transition in the exon 7. One of the most promising strategies to treat SMA is antisense oligonucleotide (AON)-mediated therapy...
June 16, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28601407/relationships-between-long-term-observations-of-motor-milestones-and-genotype-analysis-results-in-childhood-onset-japanese-spinal-muscular-atrophy-patients
#10
Kaori Kaneko, Reiko Arakawa, Mari Urano, Ryoko Aoki, Kayoko Saito
AIM: To clarify the long-term natural history of SMA in Japanese patients by investigating the peak motor milestones of cases 7months through 57years of age, in efforts to contribute to evaluating outcomes of new therapeutic interventions. METHODS: We sub-classified 112 SMA type I-III cases into type Ia, type Ib, type IIa, type IIb, type IIIa and type IIIb, according to peak motor milestone achieved, and analyzed the SMN1, SMN2 and NAIP genes in relation to clinical subtypes...
June 7, 2017: Brain & Development
https://www.readbyqxmd.com/read/28598854/analysis-of-azithromycin-monohydrate-as-a-single-or-a-combinatorial-therapy-in-a-mouse-model-of-severe-spinal-muscular-atrophy
#11
Erkan Y Osman, Charles W Washington, Madeline E Simon, Dalia Megiddo, Dalia Hagar Greif, Christian L Lorson
BACKGROUND: Spinal muscular atrophy (SMA) is a neurodegenerative autosomal recessive disorder characterized by the loss of α-motor neurons. A variety of molecular pathways are being investigated to elevate SMN protein expression in SMA models and in the clinic. One of these approaches involves stabilizing the SMNΔ7 protein by inducing translational read-through. Previous studies have demonstrated that functionality and stability are partially restored to the otherwise unstable SMNΔ7 by the addition of non-specific C-terminal peptide sequences, or by inducing a similar molecular event through the use of read-through inducing compounds such as aminoglycosides...
June 9, 2017: Journal of Neuromuscular Diseases
https://www.readbyqxmd.com/read/28598128/-molecular-features-of-sma-related-genes-in-spinal-muscular-atrophy-patients-of-han-nationality-in-southwest-china
#12
Min-Jin Wang, Jun Wang, Meng-Ge Bai, Wen-Jing Zhou, Li-Juan Wu, Si-Shi Tang, Xiao-Jun Lu, Bin-Wu Ying
OBJECTIVES: To investigate the molecular features of spinal muscular atrophy (SMA) related genes in SMA patients of Han nationality of southwest of China. METHODS: We collected 62 unrelated patients of SMA and 50 unrelated healthy individuals in this study.The copy numbers of survival motor neuron gene (SMN) and uronal-apoptosis inhibitory protein gene (NAIP) were measured by using multiplex ligation-dependent probe amplification (MLPA). RESULTS: Of 62 patients,the copy number of SMA1-4 were 30...
November 2016: Sichuan da Xue Xue Bao. Yi Xue Ban, Journal of Sichuan University. Medical Science Edition
https://www.readbyqxmd.com/read/28577599/molecular-inversion-probes-equipped-with-discontinuous-rolling-cycle-amplification-for-targeting-nucleotide-variants-determining-smn1-and-smn2-genes-in-diagnosis-of-spinal-muscular-atrophy
#13
Hwang-Shang Kou, Chun-Chi Wang
The novel techniques of molecular inversion probes (MIPs) combined with discontinuous rolling cycle amplification (DRCA) was developed for determination of the multi-nucleotide variants at single base. The different-length MIPs, a padlock-probe based technology, are designed to simultaneously recognize the identical nucleotide variants. After ligation and DRCA, the different-length genetic products representing the certain genotypes could be simply determined by the short-end capillary electrophoresis (CE) method...
July 18, 2017: Analytica Chimica Acta
https://www.readbyqxmd.com/read/28561813/therapeutic-approaches-for-spinal-muscular-atrophy-sma
#14
REVIEW
M Scoto, R S Finkel, E Mercuri, F Muntoni
Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder characterized by progressive muscle wasting and loss of muscle function due to severe motor neuron dysfunction, secondary to mutations in the survival motor neuron 1 (SMN1) gene. A second neighboring centromeric gene, SMN2, is intact in all patients but contains a C-to-T variation in exon 7 that affects a splice enhancer and determines exclusion of exon 7 in the majority of its transcript, leading to an unstable protein that cannot substitute for mutant SMN1...
May 31, 2017: Gene Therapy
https://www.readbyqxmd.com/read/28556834/developmental-regulation-of-smn-expression-pathophysiological-implications-and-perspectives-for-therapy-development-in-spinal-muscular-atrophy
#15
REVIEW
S Jablonka, M Sendtner
Spinal muscular atrophy (SMA), the predominant form of motoneuron diease in children and young adults is caused by loss of function of the SMN protein. On the basis of a disrupted splice acceptor site in exon 7, transcripts from a second SMN gene in humans called SMN2 cannot give rise to SMN protein at sufficient levels for maintaining function of motoneurons and motor circuits. First clinical trials with Spinraza/Nusinersen, a drug that counteracts disrupted splicing of SMN2 transcripts, have shown that elevating SMN levels can successfully interfere with motoneuron dysfunction...
May 30, 2017: Gene Therapy
https://www.readbyqxmd.com/read/28524214/-possible-treatments-for-infantile-spinal-atrophy
#16
S I Pascual-Pascual, M Garcia-Romero
The new treatments of spinal muscular atrophy (SMA) due by SMN1 gene deletions are reviewed. There are several ways to increase the protein SMN, its activity and persistence in the tissues. Neuroprotective drugs as olesoxime or riluzole, and drugs acting by epigenetic mechanisms, as histone deacetylase inhibitors, have shown positive effects in preclinical studies but no clear efficacy in clinical trials. They might give in the future added benefits when used associated to other genetic modifying drugs. The best improvements in murine models of SMA and in clinical trials have been reached with antisense oligonucleotides, drugs that modify the splicing of SMN2, and they are expected to get better in the near future...
May 17, 2017: Revista de Neurologia
https://www.readbyqxmd.com/read/28522225/genetic-screening-of-spinal-muscular-atrophy-using-a-real-time-modified-cop-pcr-technique-with-dried-blood-spot-dna
#17
Mawaddah Ar Rochmah, Nur Imma Fatimah Harahap, Emma Tabe Eko Niba, Kenta Nakanishi, Hiroyuki Awano, Ichiro Morioka, Kazumoto Iijima, Toshio Saito, Kayoko Saito, Poh San Lai, Yasuhiro Takeshima, Atsuko Takeuchi, Yoshihiro Bouike, Maya Okamoto, Hisahide Nishio, Masakazu Shinohara
BACKGROUND: Spinal muscular atrophy (SMA) is a common neuromuscular disorder caused by mutations in SMN1. More than 95% of SMA patients carry homozygous SMN1 deletion. SMA is the leading genetic cause of infant death, and has been considered an incurable disease. However, a recent clinical trial with an antisense oligonucleotide drug has shown encouraging clinical efficacy. Thus, early and accurate detection of SMN1 deletion may improve prognosis of many infantile SMA patients. METHODS: A total of 88 DNA samples (37 SMA patients, 12 carriers and 39 controls) from dried blood spots (DBS) on filter paper were analyzed...
May 15, 2017: Brain & Development
https://www.readbyqxmd.com/read/28485722/how-the-discovery-of-iss-n1-led-to-the-first-medical-therapy-for-spinal-muscular-atrophy
#18
REVIEW
N N Singh, M D Howell, E J Androphy, R N Singh
Spinal muscular atrophy (SMA), a prominent genetic disease of infant mortality, is caused by low levels of survival motor neuron (SMN) protein owing to deletions or mutations of the SMN1 gene. SMN2, a nearly identical copy of SMN1 present in humans, cannot compensate for the loss of SMN1 because of predominant skipping of exon 7 during pre-mRNA splicing. With the recent US Food and Drug Administration approval of nusinersen (Spinraza), the potential for correction of SMN2 exon 7 splicing as an SMA therapy has been affirmed...
May 9, 2017: Gene Therapy
https://www.readbyqxmd.com/read/28481536/discovery-of-a-small-molecule-probe-that-post-translationally-stabilizes-the-survival-motor-neuron-protein-for-the-treatment-of-spinal-muscular-atrophy
#19
Anne Rietz, Hongxia Li, Kevin M Quist, Jonathan J Cherry, Christian L Lorson, Barrington G Burnett, Nicholas L Kern, Alyssa N Calder, Melanie Fritsche, Hrvoje Lusic, Patrick J Boaler, Sungwoon Choi, Xuechao Xing, Marcie A Glicksman, Gregory D Cuny, Elliot J Androphy, Kevin J Hodgetts
Spinal muscular atrophy (SMA) is the leading genetic cause of infant death. We previously developed a high-throughput assay that employs an SMN2-luciferase reporter allowing identification of compounds that act transcriptionally, enhance exon recognition, or stabilize the SMN protein. We describe optimization and characterization of an analog suitable for in vivo testing. Initially, we identified analog 4m that had good in vitro properties but low plasma and brain exposure in a mouse PK experiment due to short plasma stability; this was overcome by reversing the amide bond and changing the heterocycle...
June 8, 2017: Journal of Medicinal Chemistry
https://www.readbyqxmd.com/read/28460014/a-44g-transition-in-smn2-intron-6-protects-patients-with-spinal-muscular-atrophy
#20
Xingxing Wu, Shu-Huei Wang, Junjie Sun, Adrian R Krainer, Yimin Hua, Thomas W Prior
Spinal muscular atrophy (SMA) is a neuromuscular disease caused by reduced expression of survival of motor neuron (SMN), a protein expressed in humans by two paralogous genes, SMN1 and SMN2. These genes are nearly identical, except for 10 single-nucleotide differences and a 5-nucleotide insertion in SMN2. SMA is subdivided into four main types, with type I being the most severe. SMN2 copy number is a key positive modifier of the disease, but it is not always inversely correlated with clinical severity. We previously reported the c...
April 28, 2017: Human Molecular Genetics
keyword
keyword
42503
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"