Read by QxMD icon Read

Finite element analysis

Jeyaraj Pradeep Kumar
The temperature distribution occurring at the interface while joining a simple electrical contact comprising of a copper wire and a copper sheet using ultrasonic metal welding was analyzed using finite element method. Heat flux due to plastic deformation and friction was calculated and provided as input load for simulation of temperature distribution. The results of temperature obtained from simulation are found to be in good agreement with the results of temperature from experiments measured using thermocouple...
June 14, 2018: Materials
Fanwei Kong, Thuy Pham, Caitlin Martin, John Elefteriades, Raymond McKay, Charles Primiano, Wei Sun
OBJECTIVES: Functional mitral regurgitation (FMR) is a significant complication of left ventricle (LV) dysfunction associated with poor prognosis and commonly treated by undersized ring annuloplasty. This study aimed to quantitatively simulate the treatment outcomes and mitral valve (MV) biomechanics following ring annulopalsty and papillary muscle relocation (PMR) procedures for a FMR patient. METHODS: We utilized a validated finite element model of the left heart for a patient with severe FMR and LV dilation from our previous study and simulated virtual ring annuloplasty procedures with various sizes of Edwards Classic and GeoForm annuloplasty rings...
2018: PloS One
Martin Horstmann, Alexander T Topham, Petra Stamm, Sebastian Kruppert, John K Colbourne, Ralph Tollrian, Linda C Weiss
Quantitative analysis of shape and form is critical in many biological disciplines, as context-dependent morphotypes reflect changes in gene expression and physiology, e.g., in comparisons of environment-dependent phenotypes, forward/reverse genetic assays or shape development during ontogenesis. 3D-shape rendering methods produce models with arbitrarily numbered, and therefore non-comparable, mesh points. However, this prevents direct comparisons. We introduce a workflow that allows the generation of comparable 3D models based on several specimens...
2018: PeerJ
A Ossareh, M Rosentritt, A Kishen
Introduction: The aim of this study was to understand the mechanism by which iatrogenic root dentin removal influences radicular stress distribution and subsequently affects the resistance to vertical root fractures (VRF) in endodontically treated teeth. Materials and Methods: The experiments were conducted in two phases. Phase 1: freshly extracted premolar teeth maintained in phosphate-buffered saline were instrumented to simulate three different degrees of dentin removal, designated as low, medium, and extreme groups...
May 2018: Journal of Conservative Dentistry: JCD
R Tao, S A Hasan, H Z Wang, J Zhou, J T Luo, G McHale, D Gibson, P Canyelles-Pericas, M D Cooke, D Wood, Y Liu, Q Wu, W P Ng, T Franke, Y Q Fu
A fundamental challenge for surface acoustic wave (SAW) temperature sensors is the detection of small temperature changes on non-planar, often curved, surfaces. In this work, we present a new design methodology for SAW devices based on flexible substrate and bimorph material/structures, which can maximize the temperature coefficient of frequency (TCF). We performed finite element analysis simulations and obtained theoretical TCF values for SAW sensors made of ZnO thin films (~5 μm thick) coated aluminum (Al) foil and Al plate substrates with thicknesses varied from 1 to 1600 μm...
June 13, 2018: Scientific Reports
Raul Ochoa-Cabrero, Teresa Alonso-Rasgado, Keith Davey
Biological experimentation has many obstacles: resource limitations, unavailability of materials, manufacturing complexities and ethical compliance issues; any approach that resolves all or some of these is of some interest. The aim of this study is applying the recently discovered concept of finite similitude as a novel approach for the design of scaled biomechanical experiments supported with analysis using a commercial finite-element package and validated by means of image correlation software. The study of isotropic scaling of synthetic bones leads to the selection of three-dimensional (3D) printed materials for the trial-space materials...
June 2018: Journal of the Royal Society, Interface
Tobias B Grun, Malte von Scheven, Manfred Bischoff, James H Nebelsick
The skeleton of Echinocyamus pusillus is considered as an exceptional model organism for structural strength and skeletal integrity within the echinoids as demonstrated by the absence of supportive collagenous fibres between single plates and the high preservation potential of their skeletons. The structural principles behind this remarkably stable, multi-plated, light-weight construction remain hardly explored. In this study, high-resolution X-ray micro-computed tomography, finite-element analysis and physical crushing tests are used to examine the structural mechanisms of this echinoid's skeleton...
June 2018: Journal of the Royal Society, Interface
Ricardo Armini Caldas, Carmem Silvia Costa Pfeifer, Ataís Bacchi, Mateus Bertolini Fernandes Dos Santos, Vagner Flávio Reginato, Rafael Leonardo Xediek Consani
The aim of this study was to evaluate by three-dimensional finite element analysis (3D-FEA) the biomechanics involved in bar-framework system for overdentures. The studied factors were latero-lateral angulation in the right implant (-10, -5, 0, 5 and 10 degrees), and different bar cross-sections (circular, Hader and oval) presenting horizontal misfits (50 or 150 µm) on the opposite implant. Positive angulation (5 and 10 degrees) for implant inclination to mesial position, negative angulation (-5 and -10 degrees) for distal position, and zero degree for parallel implants...
March 2018: Brazilian Dental Journal
Taeho Kim, Jihoon Lee, David W Fredriksson, Judson DeCew, Andrew Drach, Solomon C Yim
This study provides an engineering approach for designing an aquaculture cage system for use in constructed channel flow environments. As sustainable aquaculture has grown globally, many novel techniques have been introduced such as those implemented in the global Atlantic salmon industry. The advent of several highly sophisticated analysis software systems enables the development of such novel engineering techniques. These software systems commonly include three-dimensional (3D) drafting, computational fluid dynamics, and finite element analysis...
2018: PloS One
Ju-Won Kim, Kang-Nam Park, Chang-Hyeon Lee, Yong-Su Kim, Young-Hee Kim, Byoung-Eun Yang
A new miniplate applied differently from conventional application method for bone fixation has been developed. The novel approach is the insertion of the screw into the bone before miniplate installation. This study aimed to assess the stress distribution of a newly designed Yang's Keyhole (YK)- plate for segmental-bone fixation during sagittal split ramus osteotomy (SSO). Moreover, the effectiveness of the YK-plate system based on the clinical results was determined. The YK-plate system has a widened hole in the anterior region to permit a screw-head to be screwed through the system...
June 12, 2018: Scientific Reports
Shuai Shao, Bifeng Hu, Zhiyi Fu, Jiayu Wang, Ge Lou, Yue Zhou, Bin Jin, Yan Li, Zhou Shi
Trace elements pollution has attracted a lot of attention worldwide. However, it is difficult to identify and apportion the sources of multiple element pollutants over large areas because of the considerable spatial complexity and variability in the distribution of trace elements in soil. In this study, we collected total of 2051 topsoil (0⁻20 cm) samples, and analyzed the general pollution status of soils from the Yangtze River Delta, Southeast China. We applied principal component analysis (PCA), a finite mixture distribution model (FMDM), and geostatistical tools to identify and quantitatively apportion the sources of seven kinds of trace elements (chromium (Cr), cadmium (Cd), mercury (Hg), copper (Cu), zinc (Zn), nickel (Ni), and arsenic (As)) in soil...
June 12, 2018: International Journal of Environmental Research and Public Health
Renan de Barros E Lima Bueno, Ana Paula Dias, Katia J Ponce, Rima Wazen, John B Brunski, Antonio Nanci
When bone implants are loaded, they are inevitably subjected to displacement relative to bone. Such micromotion generates stress/strain states at the interface that can cause beneficial or detrimental sequels. The objective of this study is to better understand the mechanobiology of bone healing at the tissue-implant interface during repeated loading. Machined screw shaped Ti implants were placed in rat tibiae in a hole slightly bigger than the implant diameter. Implants were held stable by a specially-designed bone plate that permits controlled loading...
May 31, 2018: Journal of the Mechanical Behavior of Biomedical Materials
Elisabetta Maria Zanetti, Stefano Ciaramella, Michele Calì, Giulia Pascoletti, Massimo Martorelli, Riccardo Asero, David C Watts
OBJECTIVE: To investigate the influence of implant design on the change in the natural frequency of bone-implant system during osseointegration by means of a modal 3D finite element analysis. METHODS: Six implants were considered. Solid models were obtained by means of reverse engineering techniques. The mandibular bone geometry was built-up from a CT scan dataset through image segmentation. Each implant was virtually implanted in the mandibular bone. Two different models have been considered, differing in the free length of the mandibular branch ('long branch' and 'short branch') in order to simulate the variability of boundary conditions when performing vibrometric analyses...
June 8, 2018: Dental Materials: Official Publication of the Academy of Dental Materials
Xiang Guo, Qidong Ouyang, Yubo Sun, George J Weng
Bimodal nanostructured (NS) metals, in which the nano-grains or ultrafine grains serve as matrix phase while the coarse grains serve as toughening phase, can synergize the overall strength and ductility to achieve excellent bullet-proof performance. Because of the extrusion process in the fabrication, the coarse-grained (CG) inclusions are elongated in the extrusion direction and elliptical CG inclusions with different aspect ratios form. The shape, distribution, and volume fraction of these elliptical CG inclusions can all have significant influence on the overall ballistic performance...
June 8, 2018: Materials
Shiqiang Qin, Yazhou Zhang, Yun-Lai Zhou, Juntao Kang
This study applied the kriging model and particle swarm optimization (PSO) algorithm for the dynamic model updating of bridge structures using the higher vibration modes under large-amplitude initial conditions. After addressing the higher mode identification theory using time-domain operational modal analysis, the kriging model is then established based on Latin hypercube sampling and regression analysis. The kriging model performs as a surrogate model for a complex finite element model in order to predict analytical responses...
June 8, 2018: Sensors
Yu-Tzu Wang, Shao-Fu Huang, Yu-Ting Fang, Shou-Chieh Huang, Hwei-Fang Cheng, Chih-Hao Chen, Po-Fang Wang, Chun-Li Lin
This study performs a structural optimization of anatomical thin titanium mesh (ATTM) plate and optimal designed ATTM plate fabricated using additive manufacturing (AM) to verify its stabilization under fatigue testing. Finite element (FE) analysis was used to simulate the structural bending resistance of a regular ATTM plate. The Taguchi method was employed to identify the significance of each design factor in controlling the deflection and determine an optimal combination of designed factors. The optimal designed ATTM plate with patient-matched facial contour was fabricated using AM and applied to a ZMC comminuted fracture to evaluate the resting maxillary micromotion/strain under fatigue testing...
2018: BioMed Research International
Luyao Chen, Ang Ke, Peng Zhang, Zhaolong Gao, Xuecheng Zou, Jiping He
Transcutaneous spinal cord stimulation (tSCS) has been extensively studied due to its promising application in motor function restoration. Many previous studies have explored both the essential mechanism of action and the methods for determining optimal stimulation parameters. In contrast, the bioheat transfer analysis of tSCS therapy has not been investigated to the same extent, despite widely existing, and being of great significance in assuring a stable and thermally safe treatment. In this paper, we concentrated on the thermal effects of tSCS using a finite element-based method...
2018: PeerJ
Xiaoqi Geng, Xiaoyu Liu, Wei Wei, Yawei Wang, Lizhen Wang, Kinon Chen, Hongqiang Huo, Yuanjie Zhu, Yubo Fan
Purpose: To evaluate retinal damage as the result of craniomaxillofacial trauma and explain its pathogenic mechanism using finite element (FE) simulation. Methods: Computed tomography (CT) images of an adult man were obtained to construct a FE skull model. A FE skin model was built to cover the outer surface of the skull model. A previously validated FE right eye model was symmetrically copied to create a FE left eye model, and both eye models were assembled to the skull model...
May 2018: Translational Vision Science & Technology
Jung Woo Kim, Sang Hun Sul, Jae Boong Choi
In a hyper-connected society, IoT environment, markets are rapidly changing as smartphones penetrate global market. As smartphones are applied to various digital media, development of a novel smart product is required. In this paper, a Smart Product Design-Finite Element Analysis Process (SPD-FEAP) is developed to adopt fast-changing tends and user requirements that can be visually verified. The user requirements are derived and quantitatively evaluated from Smart Quality Function Deployment (SQFD) using WebData...
June 7, 2018: ISA Transactions
Mathias Peirlinck, Matthieu De Beule, Patrick Segers, Nuno Rebelo
Patient-specific biomechanical modeling of the cardiovascular system is complicated by the presence of a physiological pressure load given that the imaged tissue is in a pre-stressed and -strained state. Neglect of this prestressed state into solid tissue mechanics models leads to erroneous metrics (e.g. wall deformation, peak stress, wall shear stress) which in their turn are used for device design choices, risk assessment (e.g. procedure, rupture) and surgery planning. It is thus of utmost importance to incorporate this deformed and loaded tissue state into the computational models, which implies solving an inverse problem (calculating an undeformed geometry given the load and the deformed geometry)...
May 28, 2018: Journal of the Mechanical Behavior of Biomedical Materials
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"