Read by QxMD icon Read

Skin biomaterial nanofiber

Wan Khartini Wan Abdul Khodir, Abdul Hakim Abdul Razak, Min Hwei Ng, Vincenzo Guarino, Deny Susanti
In the current practice, the clinical use of conventional skin substitutes such as autogenous skin grafts have shown several problems, mainly with respect to limited sources and donor site morbidity. In order to overcome these limitations, the use of smart synthetic biomaterials is tremendously diffusing as skin substitutes. Indeed, engineered skin grafts or analogues frequently play an important role in the treatment of chronic skin wounds, by supporting the regeneration of newly formed tissue, and at the same time preventing infections during the long-term treatment...
May 18, 2018: Journal of Functional Biomaterials
Christophe O Chantre, Patrick H Campbell, Holly M Golecki, Adrian T Buganza, Andrew K Capulli, Leila F Deravi, Stephanie Dauth, Sean P Sheehy, Jeffrey A Paten, Karl Gledhill, Yanne S Doucet, Hasan E Abaci, Seungkuk Ahn, Benjamin D Pope, Jeffrey W Ruberti, Simon P Hoerstrup, Angela M Christiano, Kevin Kit Parker
Wounds in the fetus can heal without scarring. Consequently, biomaterials that attempt to recapitulate the biophysical and biochemical properties of fetal skin have emerged as promising pro-regenerative strategies. The extracellular matrix (ECM) protein fibronectin (Fn) in particular is believed to play a crucial role in directing this regenerative phenotype. Accordingly, Fn has been implicated in numerous wound healing studies, yet remains untested in its fibrillar conformation as found in fetal skin. Here, we show that high extensional (∼1...
June 2018: Biomaterials
S Babitha, Purna Sai Korrapati
Polymers from renewable resources are attractive for various industrial and biomedical applications owing to their compatibility, degradability, ease of use and availability. Rapid progress in the development of nanotechnology has improved the characteristic features of polymers in composite materials by reinforcing the nanosized particulates during fabrication. In this study, we have attempted to incorporate metal oxide nanoparticles into polymeric nanofibers in order to enhance the overall properties of the composite scaffold...
September 25, 2017: Biomedical Materials
Ahmad Oryan, Sonia Sahvieh
Chitosan (CS) is a carbohydrate biopolymer, which has been known as a biological material in promoting the healing process of soft and hard connective tissues. It is biocompatible, biodegradable, bioactive, non-toxic, non-expensive and non-immunogenic, with antibacterial capability. Additionally, the capacity of forming complexes with other anionic biomaterials and molecules offers CS the characteristics to be used in biomedical applications. Therefore, this natural polysaccharide has widely been used as a wound dressing and in bone and cartilage regeneration because of these considerable properties...
November 2017: International Journal of Biological Macromolecules
Sheeny Lan Levengood, Ariane E Erickson, Fei-Chien Chang, Miqin Zhang
Dermal wounds, both acute and chronic, represent a significant clinical challenge and therefore the development of novel biomaterial-based skin substitutes to promote skin repair is essential. Nanofibers have garnered attention as materials to promote skin regeneration due to the similarities in morphology and dimensionality between nanofibers and native extracellular matrix proteins, which are critical in guiding cutaneous wound healing. Electrospun chitosan-poly(caprolactone) (CPCL) nanofiber scaffolds, which combine the important intrinsic biological properties of chitosan and the mechanical integrity and stability of PCL, were evaluated as skin tissue engineering scaffolds using a mouse cutaneous excisional skin defect model...
March 7, 2017: Journal of Materials Chemistry. B, Materials for Biology and Medicine
Yachen Xu, Jinliang Peng, Xin Dong, Yuhong Xu, Haiyan Li, Jiang Chang
Biomaterials are only used as carriers of cells in the conventional tissue engineering. Considering the multi-cell environment and active cell-biomaterial interactions in tissue regeneration process, in this study, structural signals of aligned electrospun nanofibers and chemical signals of bioglass (BG) ionic products in cell culture medium are simultaneously applied to activate fibroblast-endothelial co-cultured cells in order to obtain an improved skin tissue engineering construct. Results demonstrate that the combined biomaterial signals synergistically activate fibroblast-endothelial co-culture skin tissue engineering constructs through promotion of paracrine effects and stimulation of gap junctional communication between cells, which results in enhanced vascularization and extracellular matrix protein synthesis in the constructs...
June 2017: Acta Biomaterialia
Guorui Jin, Jun Li, Kai Li
Photosensitive semiconducting polymer (SP) combined with light stimulation has shown the capability in promoting the proliferation of human dermal fibroblasts (HDFs). However, the high cytotoxicity of the used SP hindered its further application in bioactive scaffolds. In this contribution, we designed and synthesized a SP, poly (N,N-bis(2-octyldodecyl)-3,6-di(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione-alt-thieno[3,2-b]thiophene) (PDBTT) with low cytotoxicity and strong absorbance in red and near-infrared region (600-1200nm)...
January 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
Dave Jao, Xiaoyang Mou, Xiao Hu
Silk proteins are natural biopolymers that have extensive structural possibilities for chemical and mechanical modifications to facilitate novel properties, functions, and applications in the biomedical field. The versatile processability of silk fibroins (SF) into different forms such as gels, films, foams, membranes, scaffolds, and nanofibers makes it appealing in a variety of applications that require mechanically superior, biocompatible, biodegradable, and functionalizable biomaterials. There is no doubt that nature is the world's best biological engineer, with simple, exquisite but powerful designs that have inspired novel technologies...
August 5, 2016: Journal of Functional Biomaterials
Tian Zhou, Nanping Wang, Yang Xue, Tingting Ding, Xin Liu, Xiumei Mo, Jiao Sun
The development of biomaterials with the ability to induce skin wound healing is a great challenge in biomedicine. In this study, tilapia skin collagen sponge and electrospun nanofibers were developed for wound dressing. The collagen sponge was composed of at least two α-peptides. It did not change the number of spleen-derived lymphocytes in BALB/c mice, the ratio of CD4(+)/CD8(+) lymphocytes, and the level of IgG or IgM in Sprague-Dawley rats. The tensile strength and contact angle of collagen nanofibers were 6...
July 1, 2016: Colloids and Surfaces. B, Biointerfaces
Said Mahmoud Ahmed, Hanaa Ahmed, Chang Tian, Qin Tu, Yadan Guo, Jinyi Wang
Design and fabrication of scaffolds using appropriate biomaterials are a key step for the creation of functionally engineered tissues and their clinical applications. Poly(epsilon-caprolactone) (PCL), a biodegradable and biocompatible material with negligible cytotoxicity, is widely used to fabricate nanofiber scaffolds by electrospinning for the applications of pharmaceutical products and wound dressings. However, the use of PCL as such in tissue engineering is limited due to its poor bioregulatory activity, high hydrophobicity, lack of functional groups and neutral charge...
July 1, 2016: Colloids and Surfaces. B, Biointerfaces
Ingrid Tamm, Jyrki Heinämäki, Ivo Laidmäe, Liisi Rammo, Urve Paaver, Sveinung G Ingebrigtsen, Nataša Škalko-Basnet, Anna Halenius, Jouko Yliruusi, Pauliina Pitkänen, Sami Alakurtti, Karin Kogermann
Suberin fatty acids (SFAs) isolated from outer birch bark were investigated as an antimicrobial agent and biomaterial in nanofibrous mats intended for wound treatment. Electrospinning (ES) was used in preparing the composite nonwoven nanomats containing chloramphenicol (CAM; as a primary antimicrobial drug), SFAs, and polyvinylpyrrolidone (as a carrier polymer for ES). The X-ray powder diffraction, differential scanning calorimetry, scanning electron microscopy, atomic force microscopy, and texture analysis were used for the physicochemical and mechanical characterization of the nanomats...
March 2016: Journal of Pharmaceutical Sciences
Zeinab Ghanavati, Niloofar Neisi, Vahid Bayati, Manoochehr Makvandi
Tissue engineering is a new field of which the main purpose is to regenerate and repair the damaged tissues. Scaffolds serve as three dimensional matrices for neo-organogenesis and their substance can be biologic or synthetic. Natural polymers have good interactions with the cells and synthetic biomaterials are also highly useful in biomedical application because of their biocompatible properties. In addition to scaffold substance, surface properties of biomaterials have an important role in tissue engineering...
December 2015: Anatomy & Cell Biology
Fateme Ahmadi-Aghkand, Shiva Gholizadeh-Ghaleh Aziz, Yunes Panahi, Hadis Daraee, Fateme Gorjikhah, Sara Gholizadeh-Ghaleh Aziz, Arash Hsanzadeh, Abolfazl Akbarzadeh
The largest organ of human body is skin, which acting as a barrier with immunologic, sensorial and protective functions. It is always in exposure to the external environment, which can result many different types of damage and injury with loss of variable volumes of extracellular matrix (ECM). For the treatment of skin lesions and damages, several approaches are now accessible, such as the application of allografts, autografts, and tissue-engineered substitutes, wound dressings and nanofiber scaffolds approaches...
November 2016: Artificial Cells, Nanomedicine, and Biotechnology
B P Antunes, A F Moreira, V M Gaspar, I J Correia
Frequently, skin is subjected to damaging events, such as deep cuts, burns or ulcers, which may compromise the integrity of this organ. To overcome such lesions, different strategies have been employed. Among them, wound dressings aimed to re-establish skin native properties and decreased patient pain have been pursued for a long time. Herein, an electrospun membrane comprised by deacetylated/arginine modified chitosan (CH-A) was produced to be used as a wound dressing. The obtained results showed that the membrane has a highly hydrophilic and porous three-dimensional nanofibrous network similar to that found in human native extracellular matrix...
October 5, 2015: Carbohydrate Polymers
Nor Hasrul Akhmal Ngadiman, Ani Idris, Muhammad Irfan, Denni Kurniawan, Noordin Mohd Yusof, Rozita Nasiri
Maghemite (γ-Fe2O3) nanoparticle with its unique magnetic properties is recently known to enhance the cell growth rate. In this study, γ-Fe2O3 is mixed into polyvinyl alcohol (PVA) matrix and then electrospun to form nanofibers. Design of experiments was used to determine the optimum parameter settings for the electrospinning process so as to produce elctrospun mats with the preferred characteristics such as good morphology, Young's modulus and porosity. The input factors of the electrospinnning process were nanoparticles content (1-5%), voltage (25-35 kV), and flow rate (1-3 ml/h) while the responses considered were Young's modulus and porosity...
September 2015: Journal of the Mechanical Behavior of Biomedical Materials
Dongyeop X Oh, Sangsik Kim, Dohoon Lee, Dong Soo Hwang
The main impediment to medical application of biomaterial-based adhesives is their poor wet adhesion strength due to hydration-induced softening and dissolution. To solve this problem, we mimicked the wound healing process found in tunicates, which use a nanofiber structure and pyrogallol group to heal any damage on its tunic under sea water. We fabricated a tunicate-mimetic hydrogel adhesive based on a chitin nanofiber/gallic acid (a pyrogallol acid) composite. The pyrogallol group-mediated cross-linking and the nanofibrous structures improved the dissolution resistance and cohesion strength of the hydrogel compared to the amorphous polymeric hydrogels in wet condition...
July 2015: Acta Biomaterialia
Jan Pelipenko, Petra Kocbek, Julijana Kristl
Electrospun polymer nanofibers have opened new opportunities in the rapidly evolving field of tissue engineering, particularly due to their topography and variability of available biomaterials. In order to better understand nanofiber influence on cell growth, the impact of their diameter was systematically examined. In this study homogenous, randomly oriented poly(vinyl alcohol) nanofibers with five different average diameters, ranging from 70nm to 1120nm, were produced, characterized and their impact on morphology, proliferation and mobility of keratinocytes and skin fibroblasts was evaluated...
January 23, 2015: European Journal of Pharmaceutical Sciences
Fernando G Torres, Solene Commeaux, Omar P Troncoso
Some bacteria can synthesize cellulose when they are cultivated under adequate conditions. These bacteria produce a mat of cellulose on the top of the culture medium, which is formed by a three-dimensional coherent network of pure cellulose nanofibers. Bacterial cellulose (BC) has been widely used in different fields, such as the paper industry, electronics and tissue engineering due to its remarkable mechanical properties, conformability and porosity. Nanocomposites based on BC have received much attention, because of the possibility of combining the good properties of BC with other materials for specific applications...
2012: Journal of Functional Biomaterials
Daniela Steffens, Dilmar Leonardi, Paula Rigon da Luz Soster, Michelle Lersch, Annelise Rosa, Thayane Crestani, Cristiane Scher, Michele Greque de Morais, Jorge Alberto Vieira Costa, Patricia Pranke
The combination of mesenchymal stem cells (MSCs) and nanotechnology to promote tissue engineering presents a strategy for the creation of new substitutes for tissues. Aiming at the utilization of the scaffolds of poly-d,l-lactic acid (PDLLA) associated or not with Spirulina biomass (PDLLA/Sp) in skin wounds, MSCs were seeded onto nanofibers produced by electrospinning. These matrices were evaluated for morphology and fiber diameter by scanning electron microscopy and their interaction with the MSCs by confocal microscopy analysis...
December 2014: Burns: Journal of the International Society for Burn Injuries
Linpeng Fan, Zengxiao Cai, Kuihua Zhang, Feng Han, Jingliang Li, Chuanglong He, Xiumei Mo, Xungai Wang, Hongsheng Wang
Silk fibroin (SF) from Bombyx mori has many established excellent properties and has found various applications in the biomedical field. However, some abilities or capacities of SF still need improving to meet the need for using practically. Indeed, diverse SF-based composite biomaterials have been developed. Here we report the feasibility of fabricating pantothenic acid (vitamin B5, VB5)-reinforcing SF nanofibrous matrices for biomedical applications through green electrospinning. Results demonstrated the successful loading of D-pantothenic acid hemicalcium salt (VB5-hs) into resulting composite nanofibers...
May 1, 2014: Colloids and Surfaces. B, Biointerfaces
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"