keyword
MENU ▼
Read by QxMD icon Read
search

Polysaccharide monooxygenase

keyword
https://www.readbyqxmd.com/read/28434716/a-bioinformatics-analysis-of-3400-lytic-polysaccharide-oxidases-from-family-aa9
#1
Nicolas Lenfant, Matthieu Hainaut, Nicolas Terrapon, Elodie Drula, Vincent Lombard, Bernard Henrissat
Lytic polysaccharide monooxygenases of family AA9 catalyze the oxidative cleavage of glycosidic bonds in cellulose and related polysaccharides. The N-terminal half of AA9 LPMOs displays a huge sequence variability that is in contradiction with the substrate simplicity so far observed for these enzymes. To understand the cause of the high multigenicity that prevails in the family, we have performed a clustering analysis of the N-terminal region of 3400 sequences of family AA9 LPMOs, and have evaluated the coincidence of the clusters with distal visible features that may accompany functional differences...
April 13, 2017: Carbohydrate Research
https://www.readbyqxmd.com/read/28429526/sll1783-a-monooxygenase-associated-with-polysaccharide-processing-in-the-unicellular-cyanobacterium-synechocystis-pcc-6803
#2
Hélder Miranda, Peter Immerzeel, Lorenz Gerber, Katarina Hörnaeus, Sara Bergström Lind, Bagmi Pattanaik, Pia Lindberg, Fikret Mamedov, Peter Lindblad
Cyanobacteria play a pivotal role as the primary producer in many aquatic ecosystems. The knowledge on the interacting processes of cyanobacteria with its environment - abiotic and biotic factors - is still very limited. Many potential exocytoplasmic proteins in the model unicellular cyanobacterium Synechocystis PCC 6803 have unknown functions and their study is essential to improve our understanding of this photosynthetic organism and its potential for biotechnology use. Here we characterize a deletion mutant of Synechocystis PCC 6803, ∆sll1783, a strain that showed a remarkably high light resistance which is related with its lower thylakoid membrane formation...
April 21, 2017: Physiologia Plantarum
https://www.readbyqxmd.com/read/28420736/deciphering-the-regulatory-network-between-the-srebp-pathway-and-protein-secretion-in-neurospora-crassa
#3
Lina Qin, Vincent W Wu, N Louise Glass
Sterol regulatory element binding proteins (SREBPs) are conserved from yeast to mammalian cells and function in the regulation of sterol homeostasis. In fungi, the SREBP pathway has been implicated in the adaptation to hypoxia and in virulence. In Neurospora crassa and Trichoderma reesei, the SREBP pathway also negatively regulates protein secretion under lignocellulolytic conditions. Here we utilized global transcriptional profiling combined with genetic and physiological analyses to address the regulatory link between the SREBP pathway and protein secretion in N...
April 18, 2017: MBio
https://www.readbyqxmd.com/read/28417362/analyzing-activities-of-lytic-polysaccharide-monooxygenases-by-liquid-chromatography-and-mass-spectrometry
#4
Bjørge Westereng, Magnus Ø Arntzen, Jane Wittrup Agger, Gustav Vaaje-Kolstad, Vincent G H Eijsink
Lytic polysaccharide monooxygenases perform oxidative cleavage of glycosidic bonds in various polysaccharides. The majority of LMPOs studied so far possess activity on either cellulose or chitin and analysis of these activities is therefore the main focus of this review. Notably, however, the number of LPMOs that are active on other polysaccharides is increasing. The products generated by LPMOs from cellulose are either oxidized in the downstream end (at C1) or upstream end (at C4), or at both ends. These modifications only result in small structural changes, which makes both chromatographic separation and product identification by mass spectrometry challenging...
2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/28411891/recombinant-expression-of-thermobifida-fusca-e7-lpmo-in-pichia-pastoris-and-escherichia-coli-and-their-functional-characterization
#5
Kelly B Rodrigues, Jéssica K A Macêdo, Tallyta Teixeira, Jéssica S Barros, Ana C B Araújo, Fernanda P Santos, Betânia F Quirino, Bruno S A F Brasil, Thaís F C Salum, Patrícia V Abdelnur, Léia C L Fávaro
The discovery of lytic polysaccharides monooxygenases copper dependent (LPMOs) revolutionized the classical concept that the cleavage of cellulose is a hydrolytic process in recent years. These enzymes carry out oxidative cleavage of cellulose (and other polysaccharides), acting synergistically with cellulases and other hydrolases. In fact, LPMOs have the potential for increasing the efficiency of the lignocellulosic biomass conversion in biofuels and high value chemicals. Among a small number of microbial LPMOs that have been characterized, some LPMOs were expressed and characterized biochemically from the bacteria Thermobifida fusca, using the host Escherichia coli...
April 9, 2017: Carbohydrate Research
https://www.readbyqxmd.com/read/28403817/homology-to-peptide-pattern-for-annotation-of-carbohydrate-active-enzymes-and-prediction-of-function
#6
P K Busk, B Pilgaard, M J Lezyk, A S Meyer, L Lange
BACKGROUND: Carbohydrate-active enzymes are found in all organisms and participate in key biological processes. These enzymes are classified in 274 families in the CAZy database but the sequence diversity within each family makes it a major task to identify new family members and to provide basis for prediction of enzyme function. A fast and reliable method for de novo annotation of genes encoding carbohydrate-active enzymes is to identify conserved peptides in the curated enzyme families followed by matching of the conserved peptides to the sequence of interest as demonstrated for the glycosyl hydrolase and the lytic polysaccharide monooxygenase families...
April 12, 2017: BMC Bioinformatics
https://www.readbyqxmd.com/read/28394946/the-integrative-omics-of-white-rot-fungus-pycnoporus-coccineus-reveals-co-regulated-cazymes-for-orchestrated-lignocellulose-breakdown
#7
Shingo Miyauchi, David Navarro, Sacha Grisel, Didier Chevret, Jean-Guy Berrin, Marie-Noelle Rosso
Innovative green technologies are of importance for converting plant wastes into renewable sources for materials, chemicals and energy. However, recycling agricultural and forestry wastes is a challenge. A solution may be found in the forest. Saprotrophic white-rot fungi are able to convert dead plants into consumable carbon sources. Specialized fungal enzymes can be utilized for breaking down hard plant biopolymers. Thus, understanding the enzymatic machineries of such fungi gives us hints for the efficient decomposition of plant materials...
2017: PloS One
https://www.readbyqxmd.com/read/28366436/fast-purification-method-of-functional-lpmos-from-streptomyces-ambofaciens-by-affinity-adsorption
#8
Susana V Valenzuela, Guillem Ferreres, Gerard Margalef, F I Javier Pastor
A simple purification method by affinity adsorption was developed to obtain functional lytic polysaccharide monooxygenases (LPMOs). The system allows the successful purification to homogeneity of the most characterized bacterial LPMO, CBP21 from Serratia marcescens, and two LPMOs from Streptomyces ambofaciens, which have not been previously characterized. The first of these new LPMOs, named SamLPMO10B is a small enzyme (15 kDa) belonging to family 10 of auxiliary activities (AA10), showing activity on β-chitin...
February 21, 2017: Carbohydrate Research
https://www.readbyqxmd.com/read/28364950/unliganded-and-substrate-bound-structures-of-the-cellooligosaccharide-active-lytic-polysaccharide-monooxygenase-lsaa9a-at-low-ph
#9
Kristian E H Frandsen, Jens-Christian N Poulsen, Tobias Tandrup, Leila Lo Leggio
Lytic polysaccharide monooxygenases (LPMOs) have been found to be key components in microbial (bacterial and fungal) degradation of biomass. They are copper metalloenzymes that degrade polysaccharides oxidatively and act in synergy with glycoside hydrolases. Recently crystallographic studies carried out at pH 5.5 of the LPMO from Lentinus similis belonging to the fungal LPMO family AA9 have provided the first atomic resolution view of substrate-LPMO interactions. The LsAA9A structure presented here determined at pH 3...
March 24, 2017: Carbohydrate Research
https://www.readbyqxmd.com/read/28341558/biomethane-the-energy-storage-platform-chemical-and-greenhouse-gas-mitigation-target
#10
Zoltán Bagi, Norbert Ács, Tamás Böjti, Balázs Kakuk, Gábor Rákhely, Orsolya Strang, Márk Szuhaj, Roland Wirth, Kornél L Kovács
Results in three areas of anaerobic microbiology in which methane formation and utilization plays central part are reviewed. a.) Bio-methane formation by reduction of carbon dioxide in the power-to-gas process and the various possibilities of improvement of the process is a very intensively studied topic recently. From the numerous potential methods of exploiting methane of biological origin two aspects are discussed in detail. b.) Methane can serve as a platform chemical in various chemical and biochemical synthetic processes...
March 22, 2017: Anaerobe
https://www.readbyqxmd.com/read/28338903/disulfide-bridges-as-essential-elements-for-the-thermostability-of-lytic-polysaccharide-monooxygenase-lpmo10c-from-streptomyces-coelicolor
#11
Magali Tanghe, Barbara Danneels, Matthias Last, Koen Beerens, Ingeborg Stals, Tom Desmet
Lytic polysaccharide monooxygenases (LPMOs) are crucial components of cellulase mixtures but their stability has not yet been studied in detail, let alone been engineered for industrial applications. In this work, we have evaluated the importance of disulfide bridges for the thermodynamic stability of Streptomyces coelicolor LPMO10C. Interestingly, this enzyme was found to retain 34% of its activity after 2-h incubation at 80°C while its apparent melting temperature (Tm) is only 51°C. When its three disulfide bridges were broken, however, irreversible unfolding occurred and no residual activity could be detected after a similar heat treatment...
March 9, 2017: Protein Engineering, Design & Selection: PEDS
https://www.readbyqxmd.com/read/28335986/on-the-formation-and-role-of-reactive-oxygen-species-in-light-driven-lpmo-oxidation-of-phosphoric-acid-swollen-cellulose
#12
K B Möllers, H Mikkelsen, T I Simonsen, D Cannella, K S Johansen, M J Bjerrum, C Felby
Light-driven activation of lytic polysaccharide monooxygenases (LPMOs) has been attributed to the transfer of high redox potential electrons from excited photopigments to the enzyme. However, due to the formation of reactive oxygen species (ROS) in such a system, not only electrons from the pigments but also ROS could be part of the enzyme mechanism. This work investigates the role of ROS in the oxidation of phosphoric acid swollen cellulose (PASC) by a light-driven LPMO system. Our results clearly show that the addition of superoxide dismutase or catalase to remove ROS did not attenuate the capacity of the light-driven LPMO system to oxidize PASC, as measured by formation of oxidized oligosaccharides...
March 18, 2017: Carbohydrate Research
https://www.readbyqxmd.com/read/28302276/rp-uhplc-uv-esi-ms-ms-analysis-of-lpmo-generated-c4-oxidized-gluco-oligosaccharides-after-non-reductive-labeling-with-2-aminobenzamide
#13
Matthias Frommhagen, Gijs van Erven, Mark Sanders, Willem J H van Berkel, Mirjam A Kabel, Harry Gruppen
Lytic polysaccharide monooxygenases (LPMOs) are able to cleave recalcitrant polysaccharides, such as cellulose, by oxidizing the C1 and/or C4 atoms. The analysis of the resulting products requires a variety of analytical techniques. Up to now, these techniques mainly focused on the identification of non-oxidized and C1-oxidized oligosaccharides. The analysis of C4-oxidized gluco-oligosaccharides is mostly performed by using high pressure anion exchange chromatography (HPAEC). However, the alkaline conditions used during HPAEC analysis lead to tautomerization of C4-oxidized gluco-oligosaccharides, which limits the use of this technique...
March 6, 2017: Carbohydrate Research
https://www.readbyqxmd.com/read/28293293/the-podospora-anserina-lytic-polysaccharide-monooxygenase-palpmo9h-catalyzes-oxidative-cleavage-of-diverse-plant-cell-wall-matrix-glycans
#14
Mathieu Fanuel, Sona Garajova, David Ropartz, Nicholas McGregor, Harry Brumer, Hélène Rogniaux, Jean-Guy Berrin
BACKGROUND: The enzymatic conversion of plant biomass has been recently revolutionized by the discovery of lytic polysaccharide monooxygenases (LPMO) that catalyze oxidative cleavage of polysaccharides. These powerful enzymes are secreted by a large number of fungal saprotrophs and are important components of commercial enzyme cocktails used for industrial biomass conversion. Among the 33 AA9 LPMOs encoded by the genome of Podospora anserina, the PaLPMO9H enzyme catalyzes mixed C1/C4 oxidative cleavage of cellulose and cello-oligosaccharides...
2017: Biotechnology for Biofuels
https://www.readbyqxmd.com/read/28291519/structural-studies-of-neurospora-crassa-lpmo9d-and-redox-partner-cdhiia-using-neutron-crystallography-and-small-angle-scattering
#15
Annette M Bodenheimer, William B O'Dell, Christopher B Stanley, Flora Meilleur
Sensitivity to hydrogen/deuterium and lack of observable radiation damage makes cold neutrons an ideal probe the structural studies of proteins with highly photosensitive groups such as the copper center of lytic polysaccharide monooxygenases (LPMOs) and flavin adenine dinucleotide (FAD) and heme redox cofactors of cellobiose dehydrogenases (CDHs). Here, neutron crystallography and small-angle neutron scattering are used to investigate Neurospora crassa LPMO9D (NcLPMO9D) and CDHIIA (NcCDHIIA), respectively...
March 4, 2017: Carbohydrate Research
https://www.readbyqxmd.com/read/28291518/a-novel-expression-system-for-lytic-polysaccharide-monooxygenases
#16
Gaston Courtade, Simone Balzer Le, Gerd Inger Sætrom, Trygve Brautaset, Finn L Aachmann
Lytic polysaccharide monooxygenases (LPMOs) are key enzymatic players of lignocellulosic biomass degradation processes. As such, they have been introduced in cellulolytic cocktails for more efficient and less expensive lignocellulose saccharification. The recombinant production of LPMOs in bacteria for scientific investigations using vectors typically based on the T7 and lacUV5 promoters has been hampered by low yields. Reasons for this have been catabolite repression when producing the proteins in defined media with glucose as the sole carbon source, as well as the lack of an inducible expression system that allows controlled production of LPMOs that are correctly processed during translocation to the periplasmic space...
February 14, 2017: Carbohydrate Research
https://www.readbyqxmd.com/read/28257189/the-role-of-the-secondary-coordination-sphere-in-a-fungal-polysaccharide-monooxygenase
#17
Elise A Span, Daniel L M Suess, Marc C Deller, R David Britt, Michael A Marletta
Polysaccharide monooxygenases (PMOs) are secreted metalloenzymes that catalyze the oxidative degradation of polysaccharides in a copper-, oxygen-, and reductant-dependent manner. Cellulose-active fungal PMOs degrade cellulosic substrates to be utilized as a carbon source for fungal growth. To gain insight into the PMO mechanism, the role of conserved residues in the copper coordination sphere was investigated. Here, we report active-site hydrogen-bonding motifs in the secondary copper coordination sphere of MtPMO3*, a C1-oxidizing PMO from the ascomycete fungus Myceliophthora thermophila...
March 3, 2017: ACS Chemical Biology
https://www.readbyqxmd.com/read/28250814/type-dependent-action-modes-of-ttaa9e-and-taaa9a-acting-on-cellulose-and-differently-pretreated-lignocellulosic-substrates
#18
In Jung Kim, Nari Seo, Hyun Joo An, Jae-Han Kim, Paul V Harris, Kyoung Heon Kim
BACKGROUND: Lytic polysaccharide monooxygenase (LPMO) is a group of recently identified proteins that catalyze oxidative cleavage of the glycosidic linkages of cellulose and other polysaccharides. By utilizing the oxidative mode of action, LPMOs are able to enhance the efficiency of cellulase in the hydrolysis of cellulose. Particularly, auxiliary activity family 9 (AA9) is a group of fungal LPMOs that show a type-dependent regioselectivity on cellulose in which Types 1, 2, and 3 hydroxylate at C1, C4, and C1 and C4 positions, respectively...
2017: Biotechnology for Biofuels
https://www.readbyqxmd.com/read/28219736/development-of-minimal-enzyme-cocktails-for-hydrolysis-of-sulfite-pulped-lignocellulosic-biomass
#19
Piotr Chylenski, Zarah Forsberg, Jerry Ståhlberg, Anikó Várnai, Martin Lersch, Oskar Bengtsson, Solve Sæbø, Svein Jarle Horn, Vincent G H Eijsink
Despite recent progress, saccharification of lignocellulosic biomass is still a major cost driver in biorefining. In this study, we present the development of minimal enzyme cocktails for hydrolysis of Norway spruce and sugarcane bagasse, which were pretreated using the so-called BALI™ process, which is based on sulfite pulping technology. Minimal enzyme cocktails were composed using several glycoside hydrolases purified from the industrially relevant filamentous fungus Trichoderma reesei and a purified commercial β-glucosidase from Aspergillus niger...
March 20, 2017: Journal of Biotechnology
https://www.readbyqxmd.com/read/28188936/cultivation-of-podospora-anserina-on-soybean-hulls-results-in-an-efficient-enzyme-cocktail-for-plant-biomass-hydrolysis
#20
Miia R Mäkelä, Ourdia Bouzid, Diogo Robl, Harm Post, Mao Peng, Albert Heck, Maarten Altelaar, Ronald P de Vries
The coprophilic ascomycete fungus Podospora anserina was cultivated on three different plant biomasses, i.e. cotton seed hulls (CSH), soybean hulls (SBH) and acid-pretreated wheat straw (WS) for four days, and the potential of the produced enzyme mixtures was compared in the enzymatic saccharification of the corresponding lignocellulose feedstocks. The enzyme cocktail P. anserina produced after three days of growth on SBH showed superior capacity to release reducing sugars from all tested plant biomass feedstocks compared to the enzyme mixtures from CSH and WS cultures...
July 25, 2017: New Biotechnology
keyword
keyword
42102
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"