keyword
MENU ▼
Read by QxMD icon Read
search

Polysaccharide monooxygenase

keyword
https://www.readbyqxmd.com/read/28712648/elucidating-biochemical-features-and-biological-roles-of-streptomyces-proteins-recognizing-crystalline-chitin-and-cellulose-types-and-their-soluble-derivatives
#1
Hildgund Schrempf
Pioneering biochemical, immunological, physiological and microscopic studies in combination with gene cloning allowed uncovering previously unknown genes encoding proteins of streptomycetes to target crystalline chitin and cellulose as well as their soluble degradation-compounds via binding protein dependent transporters. Complementary analyses provoked an understanding of novel regulators governing transcription of selected genes. These discoveries induced detecting close and distant homologues of former orphan proteins encoded by genes from different bacteria...
June 20, 2017: Carbohydrate Research
https://www.readbyqxmd.com/read/28702082/enzymatic-degradation-of-sulfite-pulped-softwoods-and-the-role-of-lpmos
#2
Piotr Chylenski, Dejan M Petrović, Gerdt Müller, Marie Dahlström, Oskar Bengtsson, Martin Lersch, Matti Siika-Aho, Svein Jarle Horn, Vincent G H Eijsink
BACKGROUND: Recent advances in the development of enzyme cocktails for degradation of lignocellulosic biomass, especially the discovery of lytic polysaccharide monooxygenases (LPMOs), have opened new perspectives for process design and optimization. Softwood biomass is an abundant resource in many parts of the world, including Scandinavia, but efficient pretreatment and subsequent enzymatic hydrolysis of softwoods are challenging. Sulfite pulping-based pretreatments, such as in the BALI™ process, yield substrates that are relatively easy to degrade...
2017: Biotechnology for Biofuels
https://www.readbyqxmd.com/read/28698982/targeting-the-reactive-intermediate-in-polysaccharide-monooxygenases
#3
Erik D Hedegård, Ulf Ryde
Lytic polysaccharide monooxygenases (LPMOs) are copper metalloenzymes that can enhance polysaccharide depolymerization through an oxidative mechanism, making them interesting for the production of biofuel from cellulose. However, the details of this activation are unknown; in particular, the nature of the intermediate that attacks the glycoside C-H bond in the polysaccharide is not known, and a number of different species have been suggested. The homolytic bond-dissociation energy (BDE) has often been used as a descriptor for the bond-activation power, especially for inorganic model complexes...
July 11, 2017: Journal of Biological Inorganic Chemistry: JBIC
https://www.readbyqxmd.com/read/28659491/physiological-and-molecular-understanding-of-bacterial-polysaccharide-monooxygenases
#4
REVIEW
Marco Agostoni, John A Hangasky, Michael A Marletta
Bacteria have long been known to secrete enzymes that degrade cellulose and chitin. The degradation of these two polymers predominantly involves two enzyme families that work synergistically with one another: glycoside hydrolases (GHs) and polysaccharide monooxygenases (PMOs). Although bacterial PMOs are a relatively recent addition to the known biopolymer degradation machinery, there is an extensive amount of literature implicating PMO in numerous physiological roles. This review focuses on these diverse and physiological aspects of bacterial PMOs, including facilitating endosymbiosis, conferring a nutritional advantage, and enhancing virulence in pathogenic organisms...
September 2017: Microbiology and Molecular Biology Reviews: MMBR
https://www.readbyqxmd.com/read/28624475/oxidoreductases-on-their-way-to-industrial-biotransformations
#5
REVIEW
Angel T Martínez, Francisco J Ruiz-Dueñas, Susana Camarero, Ana Serrano, Dolores Linde, Henrik Lund, Jesper Vind, Morten Tovborg, Owik M Herold-Majumdar, Martin Hofrichter, Christiane Liers, René Ullrich, Katrin Scheibner, Giovanni Sannia, Alessandra Piscitelli, Cinzia Pezzella, Mehmet E Sener, Sibel Kılıç, Willem J H van Berkel, Victor Guallar, Maria Fátima Lucas, Ralf Zuhse, Roland Ludwig, Frank Hollmann, Elena Fernández-Fueyo, Eric Record, Craig B Faulds, Marta Tortajada, Ib Winckelmann, Jo-Anne Rasmussen, Mirjana Gelo-Pujic, Ana Gutiérrez, José C Del Río, Jorge Rencoret, Miguel Alcalde
Fungi produce heme-containing peroxidases and peroxygenases, flavin-containing oxidases and dehydrogenases, and different copper-containing oxidoreductases involved in the biodegradation of lignin and other recalcitrant compounds. Heme peroxidases comprise the classical ligninolytic peroxidases and the new dye-decolorizing peroxidases, while heme peroxygenases belong to a still largely unexplored superfamily of heme-thiolate proteins. Nevertheless, basidiomycete unspecific peroxygenases have the highest biotechnological interest due to their ability to catalyze a variety of regio- and stereo-selective monooxygenation reactions with H2O2 as the source of oxygen and final electron acceptor...
June 14, 2017: Biotechnology Advances
https://www.readbyqxmd.com/read/28562644/a-quantitative-indicator-diagram-for-lytic-polysaccharide-monooxygenases-reveals-the-role-of-aromatic-surface-residues-in-hjlpmo9a-regioselectivity
#6
Barbara Danneels, Magali Tanghe, Henk-Jan Joosten, Thomas Gundinger, Oliver Spadiut, Ingeborg Stals, Tom Desmet
Lytic polysaccharide monooxygenases (LPMOs) have changed our understanding of lignocellulosic degradation dramatically over the last years. These metalloproteins catalyze oxidative cleavage of recalcitrant polysaccharides and can act on the C1 and/or C4 position of glycosidic bonds. Structural data have led to several hypotheses, but we are still a long way from reaching complete understanding of the factors that determine their divergent regioselectivity. Site-directed mutagenesis enables the investigation of structure-function relationship in enzymes and will be of major importance in unraveling this intriguing matter...
2017: PloS One
https://www.readbyqxmd.com/read/28535872/fungal-secretomics-to-probe-the-biological-functions-of-lytic-polysaccharide-monooxygenases
#7
Jean-Guy Berrin, Marie-Noëlle Rosso, Maher Abou Hachem
Enzymatic degradation of plant biomass is of growing interest for the development of a sustainable bio-based industry. Filamentous fungi, which degrade complex and recalcitrant plant polymers, are proficient secretors of enzymes acting on the lignocellulose composite of plant cell walls in addition to starch, the main carbon storage reservoir. In this review, we focus on the identification of lytic polysaccharide monooxygenases (LPMOs) and their redox partners in fungal secretomes to highlight the biological functions of these remarkable enzyme systems and we discuss future trends related to LPMO-potentiated bioconversion...
May 17, 2017: Carbohydrate Research
https://www.readbyqxmd.com/read/28515785/recombinant-expression-of-thermostable-processive-mteg5-endoglucanase-and-its-synergism-with-mtlpmo-from-myceliophthora-thermophila-during-the-hydrolysis-of-lignocellulosic-substrates
#8
Anthi Karnaouri, Madhu Nair Muraleedharan, Maria Dimarogona, Evangelos Topakas, Ulrika Rova, Mats Sandgren, Paul Christakopoulos
BACKGROUND: Filamentous fungi are among the most powerful cellulolytic organisms in terrestrial ecosystems. To perform the degradation of lignocellulosic substrates, these microorganisms employ both hydrolytic and oxidative mechanisms that involve the secretion and synergism of a wide variety of enzymes. Interactions between these enzymes occur on the level of saccharification, i.e., the release of neutral and oxidized products, but sometimes also reflected in the substrate liquefaction...
2017: Biotechnology for Biofuels
https://www.readbyqxmd.com/read/28496100/structure-and-function-of-a-broad-specificity-chitin-deacetylase-from-aspergillus-nidulans-fgsc-a4
#9
Zhanliang Liu, Laurie M Gay, Tina R Tuveng, Jane W Agger, Bjørge Westereng, Geir Mathiesen, Svein J Horn, Gustav Vaaje-Kolstad, Daan M F van Aalten, Vincent G H Eijsink
Enzymatic conversion of chitin, a β-1,4 linked polymer of N-acetylglucosamine, is of major interest in areas varying from the biorefining of chitin-rich waste streams to understanding how medically relevant fungi remodel their chitin-containing cell walls. Although numerous chitinolytic enzymes have been studied in detail, relatively little is known about enzymes capable of deacetylating chitin. We describe the structural and functional characterization of a 237 residue deacetylase (AnCDA) from Aspergillus nidulans FGSC A4...
May 11, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28491137/boosting-lpmo-driven-lignocellulose-degradation-by-polyphenol-oxidase-activated-lignin-building-blocks
#10
Matthias Frommhagen, Sumanth Kumar Mutte, Adrie H Westphal, Martijn J Koetsier, Sandra W A Hinz, Jaap Visser, Jean-Paul Vincken, Dolf Weijers, Willem J H van Berkel, Harry Gruppen, Mirjam A Kabel
BACKGROUND: Many fungi boost the deconstruction of lignocellulosic plant biomass via oxidation using lytic polysaccharide monooxygenases (LPMOs). The application of LPMOs is expected to contribute to ecologically friendly conversion of biomass into fuels and chemicals. Moreover, applications of LPMO-modified cellulose-based products may be envisaged within the food or material industry. RESULTS: Here, we show an up to 75-fold improvement in LPMO-driven cellulose degradation using polyphenol oxidase-activated lignin building blocks...
2017: Biotechnology for Biofuels
https://www.readbyqxmd.com/read/28481095/neutron-and-atomic-resolution-x-ray-structures-of-a-lytic-polysaccharide-monooxygenase-reveal-copper-mediated-dioxygen-binding-and-evidence-for-n-terminal-deprotonation
#11
John-Paul Bacik, Sophanit Mekasha, Zarah Forsberg, Andrey Y Kovalevsky, Gustav Vaaje-Kolstad, Vincent G H Eijsink, Jay C Nix, Leighton Coates, Matthew J Cuneo, Clifford J Unkefer, Julian C-H Chen
A 1.1 Å resolution, room-temperature X-ray structure and a 2.1 Å resolution neutron structure of a chitin-degrading lytic polysaccharide monooxygenase domain from the bacterium Jonesia denitrificans (JdLPMO10A) show a putative dioxygen species equatorially bound to the active site copper. Both structures show an elongated density for the dioxygen, most consistent with a Cu(II)-bound peroxide. The coordination environment is consistent with Cu(II). In the neutron and X-ray structures, difference maps reveal the N-terminal amino group, involved in copper coordination, is present as a mixed ND2 and ND(-), suggesting a role for the copper ion in shifting the pKa of the amino terminus...
May 23, 2017: Biochemistry
https://www.readbyqxmd.com/read/28450248/fungal-lytic-polysaccharide-monooxygenases-from-family-aa9-recent-developments-and-application-in-lignocelullose-breakdown
#12
REVIEW
Antonielle Vieira Monclaro, Edivaldo Ximenes Ferreira Filho
Fungal lytic polysaccharide monooxygenases (LPMOs) from family AA9 are oxidative enzymes that, in the past few years, have changed the paradigm of cellulose conversion. They are key factor in the lignocellulose breakdown and are widely distributed among fungi. This review focuses on LPMOs from family AA9 and gives an overview of recent discoveries relative to their structure, mode of action, and synergism with other enzymes. Finally, several aspects regarding their potential applications toward deconstruction of biomass and biorefinery processes are discussed...
September 2017: International Journal of Biological Macromolecules
https://www.readbyqxmd.com/read/28434716/a-bioinformatics-analysis-of-3400-lytic-polysaccharide-oxidases-from-family-aa9
#13
Nicolas Lenfant, Matthieu Hainaut, Nicolas Terrapon, Elodie Drula, Vincent Lombard, Bernard Henrissat
Lytic polysaccharide monooxygenases of family AA9 catalyze the oxidative cleavage of glycosidic bonds in cellulose and related polysaccharides. The N-terminal half of AA9 LPMOs displays a huge sequence variability that is in contradiction with the substrate simplicity so far observed for these enzymes. To understand the cause of the high multigenicity that prevails in the family, we have performed a clustering analysis of the N-terminal region of 3400 sequences of family AA9 LPMOs, and have evaluated the coincidence of the clusters with distal visible features that may accompany functional differences...
April 13, 2017: Carbohydrate Research
https://www.readbyqxmd.com/read/28429526/sll1783-a-monooxygenase-associated-with-polysaccharide-processing-in-the-unicellular-cyanobacterium-synechocystis-pcc-6803
#14
Hélder Miranda, Peter Immerzeel, Lorenz Gerber, Katarina Hörnaeus, Sara Bergström Lind, Bagmi Pattanaik, Pia Lindberg, Fikret Mamedov, Peter Lindblad
Cyanobacteria play a pivotal role as the primary producer in many aquatic ecosystems. The knowledge on the interacting processes of cyanobacteria with its environment - abiotic and biotic factors - is still very limited. Many potential exocytoplasmic proteins in the model unicellular cyanobacterium Synechocystis PCC 6803 have unknown functions and their study is essential to improve our understanding of this photosynthetic organism and its potential for biotechnology use. Here we characterize a deletion mutant of Synechocystis PCC 6803, ∆sll1783, a strain that showed a remarkably high light resistance which is related with its lower thylakoid membrane formation...
April 21, 2017: Physiologia Plantarum
https://www.readbyqxmd.com/read/28420736/deciphering-the-regulatory-network-between-the-srebp-pathway-and-protein-secretion-in-neurospora-crassa
#15
Lina Qin, Vincent W Wu, N Louise Glass
Sterol regulatory element binding proteins (SREBPs) are conserved from yeast to mammalian cells and function in the regulation of sterol homeostasis. In fungi, the SREBP pathway has been implicated in the adaptation to hypoxia and in virulence. In Neurospora crassa and Trichoderma reesei, the SREBP pathway also negatively regulates protein secretion under lignocellulolytic conditions. Here we utilized global transcriptional profiling combined with genetic and physiological analyses to address the regulatory link between the SREBP pathway and protein secretion in N...
April 18, 2017: MBio
https://www.readbyqxmd.com/read/28417362/analyzing-activities-of-lytic-polysaccharide-monooxygenases-by-liquid-chromatography-and-mass-spectrometry
#16
Bjørge Westereng, Magnus Ø Arntzen, Jane Wittrup Agger, Gustav Vaaje-Kolstad, Vincent G H Eijsink
Lytic polysaccharide monooxygenases perform oxidative cleavage of glycosidic bonds in various polysaccharides. The majority of LMPOs studied so far possess activity on either cellulose or chitin and analysis of these activities is therefore the main focus of this review. Notably, however, the number of LPMOs that are active on other polysaccharides is increasing. The products generated by LPMOs from cellulose are either oxidized in the downstream end (at C1) or upstream end (at C4), or at both ends. These modifications only result in small structural changes, which makes both chromatographic separation and product identification by mass spectrometry challenging...
2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/28411891/recombinant-expression-of-thermobifida-fusca-e7-lpmo-in-pichia-pastoris-and-escherichia-coli-and-their-functional-characterization
#17
Kelly B Rodrigues, Jéssica K A Macêdo, Tallyta Teixeira, Jéssica S Barros, Ana C B Araújo, Fernanda P Santos, Betânia F Quirino, Bruno S A F Brasil, Thaís F C Salum, Patrícia V Abdelnur, Léia C L Fávaro
The discovery of lytic polysaccharides monooxygenases copper dependent (LPMOs) revolutionized the classical concept that the cleavage of cellulose is a hydrolytic process in recent years. These enzymes carry out oxidative cleavage of cellulose (and other polysaccharides), acting synergistically with cellulases and other hydrolases. In fact, LPMOs have the potential for increasing the efficiency of the lignocellulosic biomass conversion in biofuels and high value chemicals. Among a small number of microbial LPMOs that have been characterized, some LPMOs were expressed and characterized biochemically from the bacteria Thermobifida fusca, using the host Escherichia coli...
April 9, 2017: Carbohydrate Research
https://www.readbyqxmd.com/read/28403817/homology-to-peptide-pattern-for-annotation-of-carbohydrate-active-enzymes-and-prediction-of-function
#18
P K Busk, B Pilgaard, M J Lezyk, A S Meyer, L Lange
BACKGROUND: Carbohydrate-active enzymes are found in all organisms and participate in key biological processes. These enzymes are classified in 274 families in the CAZy database but the sequence diversity within each family makes it a major task to identify new family members and to provide basis for prediction of enzyme function. A fast and reliable method for de novo annotation of genes encoding carbohydrate-active enzymes is to identify conserved peptides in the curated enzyme families followed by matching of the conserved peptides to the sequence of interest as demonstrated for the glycosyl hydrolase and the lytic polysaccharide monooxygenase families...
April 12, 2017: BMC Bioinformatics
https://www.readbyqxmd.com/read/28394946/the-integrative-omics-of-white-rot-fungus-pycnoporus-coccineus-reveals-co-regulated-cazymes-for-orchestrated-lignocellulose-breakdown
#19
Shingo Miyauchi, David Navarro, Sacha Grisel, Didier Chevret, Jean-Guy Berrin, Marie-Noelle Rosso
Innovative green technologies are of importance for converting plant wastes into renewable sources for materials, chemicals and energy. However, recycling agricultural and forestry wastes is a challenge. A solution may be found in the forest. Saprotrophic white-rot fungi are able to convert dead plants into consumable carbon sources. Specialized fungal enzymes can be utilized for breaking down hard plant biopolymers. Thus, understanding the enzymatic machineries of such fungi gives us hints for the efficient decomposition of plant materials...
2017: PloS One
https://www.readbyqxmd.com/read/28366436/fast-purification-method-of-functional-lpmos-from-streptomyces-ambofaciens-by-affinity-adsorption
#20
Susana V Valenzuela, Guillem Ferreres, Gerard Margalef, F I Javier Pastor
A simple purification method by affinity adsorption was developed to obtain functional lytic polysaccharide monooxygenases (LPMOs). The system allows the successful purification to homogeneity of the most characterized bacterial LPMO, CBP21 from Serratia marcescens, and two LPMOs from Streptomyces ambofaciens, which have not been previously characterized. The first of these new LPMOs, named SamLPMO10B is a small enzyme (15 kDa) belonging to family 10 of auxiliary activities (AA10), showing activity on β-chitin...
February 21, 2017: Carbohydrate Research
keyword
keyword
42102
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"