Read by QxMD icon Read


Maria Perez Carrion, Francesca Pischedda, Alice Biosa, Isabella Russo, Letizia Straniero, Laura Civiero, Marianna Guida, Christian J Gloeckner, Nicola Ticozzi, Cinzia Tiloca, Claudio Mariani, Gianni Pezzoli, Stefano Duga, Irene Pichler, Lifeng Pan, John E Landers, Elisa Greggio, Michael W Hess, Stefano Goldwurm, Giovanni Piccoli
Mutations in leucine-rich repeat kinase 2 gene ( LRRK2 ) are associated with familial and sporadic Parkinson's disease (PD). LRRK2 is a complex protein that consists of multiple domains, including 13 putative armadillo-type repeats at the N-terminus. In this study, we analyzed the functional and molecular consequences of a novel variant, E193K, identified in an Italian family. E193K substitution does not influence LRRK2 kinase activity. Instead it affects LRRK2 biochemical properties, such as phosphorylation at Ser935 and affinity for 14-3-3ε...
2018: Frontiers in Molecular Neuroscience
Ashfaqul Hoque, Priyadharshini Sivakumaran, Simon T Bond, Naomi X Y Ling, Anne M Kong, John W Scott, Nadeeka Bandara, Damián Hernández, Guei-Sheung Liu, Raymond C B Wong, Michael T Ryan, Derek J Hausenloy, Bruce E Kemp, Jonathan S Oakhill, Brian G Drew, Alice Pébay, Shiang Y Lim
Human induced pluripotent stem cells (iPSCs) are a valuable tool for studying the cardiac developmental process in vitro, and cardiomyocytes derived from iPSCs are a putative cell source for personalized medicine. Changes in mitochondrial morphology have been shown to occur during cellular reprogramming and pluripotent stem cell differentiation. However, the relationships between mitochondrial dynamics and cardiac mesoderm commitment of iPSCs remain unclear. Here we demonstrate that changes in mitochondrial morphology from a small granular fragmented phenotype in pluripotent stem cells to a filamentous reticular elongated network in differentiated cardiomyocytes are required for cardiac mesodermal differentiation...
December 2018: Cell Death Discovery
Seokjo Kang, Jayoung Byun, Sung Min Son, Inhee Mook-Jung
Alzheimer's disease (AD) is often characterized by the impairment of mitochondrial function caused by excessive mitochondrial fragmentation. Thrombospondin-1 (TSP-1), which is primarily secreted from astrocytes in the central nervous system (CNS), has been suggested to play a role in synaptogenesis, spine morphology, and synaptic density of neurons. In this study, we investigate the protective role of TSP-1 in the recovery of mitochondrial morphology and function in amyloid β (Aβ)-treated mouse hippocampal neuroblastoma cells (HT22)...
December 2018: Cell Death Discovery
Summer J Rozzi, Valeria Avdoshina, Jerel A Fields, Italo Mocchetti
Human immunodeficiency virus-1 (HIV) infection of the central nervous system promotes neuronal injury that culminates in HIV-associated neurocognitive disorders. Viral proteins, including transactivator of transcription (Tat), have emerged as leading candidates to explain HIV-mediated neurotoxicity, though the mechanisms remain unclear. Tat transgenic mice or neurons exposed to Tat, which show neuronal loss, exhibit smaller mitochondria as compared to controls. To provide an experimental clue as to which mechanisms are used by Tat to promote changes in mitochondrial morphology, rat cortical neurons were exposed to Tat (100 nM) for various time points...
December 2018: Cell Death Discovery
Francesca Martorana, Daniela Gaglio, Maria Rosaria Bianco, Federica Aprea, Assunta Virtuoso, Marcella Bonanomi, Lilia Alberghina, Michele Papa, Anna Maria Colangelo
Neuronal differentiation involves extensive modification of biochemical and morphological properties to meet novel functional requirements. Reorganization of the mitochondrial network to match the higher energy demand plays a pivotal role in this process. Mechanisms of neuronal differentiation in response to nerve growth factor (NGF) have been largely characterized in terms of signaling, however, little is known about its impact on mitochondrial remodeling and metabolic function. In this work, we show that NGF-induced differentiation requires the activation of autophagy mediated by Atg9b and Ambra1, as it is disrupted by their genetic knockdown and by autophagy blockers...
March 9, 2018: Cell Death & Disease
Ivone Leong
No abstract text is available yet for this article.
March 9, 2018: Nature Reviews. Endocrinology
Da Yeon Kim, Seok Yun Jung, Yeon Ju Kim, Songhwa Kang, Ji Hye Park, Seung Taek Ji, Woong Bi Jang, Shreekrishna Lamichane, Babita Dahal Lamichane, Young Chan Chae, Dongjun Lee, Joo Seop Chung, Sang-Mo Kwon
Tumor undergo uncontrolled, excessive proliferation leads to hypoxic microenvironment. To fulfill their demand for nutrient, and oxygen, tumor angiogenesis is required. Endothelial progenitor cells (EPCs) have been known to the main source of angiogenesis because of their potential to differentiation into endothelial cells. Therefore, understanding the mechanism of EPC-mediated angiogenesis in hypoxia is critical for development of cancer therapy. Recently, mitochondrial dynamics has emerged as a critical mechanism for cellular function and differentiation under hypoxic conditions...
March 2018: Korean Journal of Physiology & Pharmacology
Fenghua Chen, Jibrin Danladi, Maryam Ardalan, Betina Elfving, Heidi K Müller, Gregers Wegener, Connie Sanchez, Jens R Nyengaard
Background: Preclinical studies have indicated that antidepressant effect of vortioxetine involves increased synaptic plasticity and promotion of spine maturation. Mitochondria dysfunction may contribute to the pathophysiological basis of major depressive disorder. Taking into consideration that vortioxetine increases spine number and dendritic branching in hippocampus CA1 faster than fluoxetine, we hypothesize that new spines induced by vortioxetine can rapidly form functional synapses by mitochondrial support, accompanied by increased brain-derived neurotrophic factor (BDNF)-signaling...
March 5, 2018: International Journal of Neuropsychopharmacology
Qian Han, Guihua Li, Mary SiuMan Ip, Yuelin Zhang, Zhe Zhen, Judith ChoiWo Mak, Nuofu Zhang
Obstructive sleep apnoea (OSA) characterized by intermittent hypoxia (IH) is closely associated with cardiovascular diseases. IH confers cardiac injury via accelerating cardiomyocyte apoptosis, whereas the underlying mechanism has remained largely enigmatic. This study aimed to explore the potential mechanisms involved in the IH-induced cardiac damage performed with the IH-exposed cell and animal models and to investigate the protective effects of haemin, a potent haeme oxygenase-1 (HO-1) activator, on the cardiac injury induced by IH...
March 7, 2018: Journal of Cellular and Molecular Medicine
Jie Gao, Ailin Luo, Jing Yan, Xi Fang, Xiaole Tang, Yilin Zhao, Shiyong Li
Accumulating evidence indicates that general anesthetics can cause acute neuroapoptosis and long-term cognitive deficit in models exposed to anesthetics during the brain growth-spurt period. Anesthetics-induced imbalance of mitochondrial fusion and fission preceded and contributed to developmental neuroapoptosis. Accordingly, the imbalance was accompanied by activation of dynamin-related protein (Drp)1 which was closely associated with synaptic degeneration in neurodegenerative diseases. Based on the neuroprotective role of mitochondrial division inhibitor-1 (mdivi-1) in neurodegeneration and stroke, we set out to examine whether mdivi-1 can mitigate developmental neurotoxicity induced by isoflurane...
2018: American Journal of Translational Research
Aurel Popa-Wagner, Raluca E Sandu, Coman Cristin, Adriana Uzoni, Kevin A Welle, Jennifer R Hryhorenko, Sina Ghaemmaghami
Brain structures differ in the magnitude of age-related neuron loss with the cerebellum being more affected. An underlying cause could be an age-related decline in mitochondrial bioenergetics. Successful aging of mitochondria reflects a balanced turnover of proteins involved in mitochondrial biogenesis and mitophagy. Thus, an imbalance in mitochondrial turnover can contribute to the diminution of cellular function seen during aging. Mitochondrial biogenesis and mitophagy are mediated by a set of proteins including MFN1, MFN2, OPA1, DRP1, FIS1 as well as DMN1l and DNM1, all of which are required for mitochondrial fission...
2018: Frontiers in Aging Neuroscience
Tianzheng Yu, Iman Ferdjallah, Falicia Elenberg, Star K Chen, Patricia Deuster, Yifan Chen
AIMS: We have previously demonstrated in vitro that heat-induced skeletal muscle damage is associated with an increase in dynamin-related protein 1 (Drp1)-mediated mitochondrial fission and no change in mitochondrial fusion. In this study, we investigated the in vivo effects of mitochondrial fission inhibition on heat-induced oxidative skeletal muscle injury and hyperthermic response in mice. MAIN METHODS: Core body temperatures of mice pre-treated with vehicle or Mdivi-1 were recorded by radio telemetry during heat exposure...
February 27, 2018: Life Sciences
Pedro Scarpelli, Giulliana Tessarin Almeida, Kênia Lopes Viçoso, Wania Rezende Lima, Lucas Borges Pereira, Kamila Anna Meissner, Carsten Wrenger, Anna Rafaello, Rosario Rizzuto, Tullio Pozzan, Celia R S Garcia
Malaria causes millions of deaths worldwide and is considered a huge burden to underdeveloped countries. The number of cases with resistance to all antimalarials is continuously increasing, making the identification of novel drugs a very urgent necessity. A potentially very interesting target for novel therapeutic intervention is the parasite mitochondrion. In this work we studied in P. falciparum three genes coding for proteins homologues of the mammalian FIS1 (Mitochondrial Fission Protein 1) and DRP1 (Dynamin Related Protein 1) involved in mitochondrial fission...
February 26, 2018: Journal of Pineal Research
Jean-Philippe Leduc-Gaudet, Olivier Reynaud, François Chabot, Jocelyne Mercier, David E Andrich, David H St-Pierre, Gilles Gouspillou
Multiple aspects of mitochondrial function and dynamics remain poorly studied in the skeletal muscle of pediatric models in response to a short-term high-fat diet (HFD). This study investigated the impact of a short-term HFD on mitochondrial function and dynamics in the oxidative soleus (SOL) and glycolytic extensor digitorum longus (EDL) muscles in young rats. Young male Wistar rats were submitted to either HFD or normal chow (NCD) diets for 14 days. Permeabilized myofibers from SOL and EDL were prepared to assess mitochondrial respiration and reactive oxygen species (ROS) production...
February 2018: Physiological Reports
Karen Schmitt, Amandine Grimm, Robert Dallmann, Bjoern Oettinghaus, Lisa Michelle Restelli, Melissa Witzig, Naotada Ishihara, Katsuyoshi Mihara, Jürgen A Ripperger, Urs Albrecht, Stephan Frank, Steven A Brown, Anne Eckert
Mitochondrial fission-fusion dynamics and mitochondrial bioenergetics, including oxidative phosphorylation and generation of ATP, are strongly clock controlled. Here we show that these circadian oscillations depend on circadian modification of dynamin-related protein 1 (DRP1), a key mediator of mitochondrial fission. We used a combination of in vitro and in vivo models, including human skin fibroblasts and DRP1-deficient or clock-deficient mice, to show that these dynamics are clock controlled via circadian regulation of DRP1...
February 16, 2018: Cell Metabolism
Ana Rita Lima, Liliana Santos, Marcelo Correia, Paula Soares, Manuel Sobrinho-Simões, Miguel Melo, Valdemar Máximo
Mitochondrial dynamics are known to have an important role in so-called age-related diseases, including cancer. Mitochondria is an organelle involved in many key cellular functions and responds to physiologic or stress stimuli by adapting its structure and function. Perhaps the most important structural changes involve mitochondrial dynamics (fission and fusion), which occur in normal cells as well as in cells under dysregulation, such as cancer cells. Dynamin-related protein 1 (DRP1), a member of the dynamin family of guanosine triphosphatases (GTPases), is the key component of mitochondrial fission machinery...
February 21, 2018: Genes
Amit U Joshi, Nay L Saw, Mehrdad Shamloo, Daria Mochly-Rosen
Mitochondrial dynamics, involving a balance between fusion and fission, regulates mitochondrial quality and number. Increasing evidence suggests that dysfunctional mitochondria play a role in Alzheimer's disease (AD). We observed that Drp1 interaction with one of the adaptors, Fis1, is significantly increased in Aβ-treated neurons and AD patient-derived fibroblasts. P110, a seven-amino acid peptide, which specifically inhibits Drp1/Fis1 interaction without affecting the interaction of Drp1 with its other adaptors, attenuated Aβ42 -induced mitochondrial recruitment of Drp1 and prevented mitochondrial structural and functional dysfunction in cultured neurons, in cells expressing mutant amyloid precursor protein (KM670/671NL), and in five different AD patient-derived fibroblasts...
January 19, 2018: Oncotarget
Jonathan Ausman, Joelcio Abbade, Leonardo Ermini, Abby Farrell, Andrea Tagliaferro, Martin Post, Isabella Caniggia
Mitochondria are in a constant balance of fusing and dividing in response to cellular cues. Fusion creates healthy mitochondria, whereas fission results in removal of non-functional organelles. Changes in mitochondrial dynamics typify several human diseases. However, the contribution of mitochondrial dynamics to preeclampsia, a hypertensive disorder of pregnancy characterized by placental cell autophagy and death, remains unknown. Herein, we show that the mitochondrial dynamic balance in preeclamptic placentae is tilted toward fission (increased DRP1 expression/activation and decreased OPA1 expression)...
February 20, 2018: Cell Death & Disease
Philip Böhler, Fabian Stuhldreier, Ruchika Anand, Arun Kumar Kondadi, David Schlütermann, Niklas Berleth, Jana Deitersen, Nora Wallot-Hieke, Wenxian Wu, Marian Frank, Hendrik Niemann, Elisabeth Wesbuer, Andreas Barbian, Tomas Luyten, Jan B Parys, Stefanie Weidtkamp-Peters, Andrea Borchardt, Andreas S Reichert, Aida Peña-Blanco, Ana J García-Sáez, Samuel Itskanov, Alexander M van der Bliek, Peter Proksch, Sebastian Wesselborg, Björn Stork
Mitochondria are cellular organelles with crucial functions in the generation and distribution of ATP, the buffering of cytosolic Ca2+ and the initiation of apoptosis. Compounds that interfere with these functions are termed mitochondrial toxins, many of which are derived from microbes, such as antimycin A, oligomycin A, and ionomycin. Here, we identify the mycotoxin phomoxanthone A (PXA), derived from the endophytic fungus Phomopsis longicolla, as a mitochondrial toxin. We show that PXA elicits a strong release of Ca2+ from the mitochondria but not from the ER...
February 19, 2018: Cell Death & Disease
Gao-Feng Zhang, Pei Yang, Zeng Yin, Huai-Long Chen, Fu-Guo Ma, Bin Wang, Li-Xin Sun, Yan-Lin Bi, Fei Shi, Ming-Shan Wang
Electroacupuncture preconditioning at acupoint Baihui (GV20) can reduce focal cerebral ischemia/reperfusion injury. However, the precise protective mechanism remains unknown. Mitochondrial fission mediated by dynamin-related protein 1 (Drp1) can trigger neuronal apoptosis following cerebral ischemia/reperfusion injury. Herein, we examined the hypothesis that electroacupuncture pretreatment can regulate Drp1, and thus inhibit mitochondrial fission to provide cerebral protection. Rat models of focal cerebral ischemia/reperfusion injury were established by middle cerebral artery occlusion at 24 hours after 5 consecutive days of preconditioning with electroacupuncture at GV20 (depth 2 mm, intensity 1 mA, frequency 2/15 Hz, for 30 minutes, once a day)...
January 2018: Neural Regeneration Research
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"