keyword
MENU ▼
Read by QxMD icon Read
search

computational structural biology

keyword
https://www.readbyqxmd.com/read/27932294/large-scale-structure-based-prediction-and-identification-of-novel-protease-substrates-using-computational-protein-design
#1
Manasi A Pethe, Aliza B Rubenstein, Sagar D Khare
Characterizing the substrate specificity of protease enzymes is critical for illuminating the molecular basis of their diverse and complex roles in a wide array of biological processes. Rapid and accurate prediction of their extended substrate specificity would also aid in the design of custom proteases capable of selectively and controllably cleaving biotechnologically or therapeutically relevant targets. However, current in silico approaches for protease specificity prediction, rely on, and are therefore limited by, machine learning of sequence patterns in known experimental data...
December 5, 2016: Journal of Molecular Biology
https://www.readbyqxmd.com/read/27930705/on-the-wiener-polarity-index-of-lattice-networks
#2
Lin Chen, Tao Li, Jinfeng Liu, Yongtang Shi, Hua Wang
Network structures are everywhere, including but not limited to applications in biological, physical and social sciences, information technology, and optimization. Network robustness is of crucial importance in all such applications. Research on this topic relies on finding a suitable measure and use this measure to quantify network robustness. A number of distance-based graph invariants, also known as topological indices, have recently been incorporated as descriptors of complex networks. Among them the Wiener type indices are the most well known and commonly used such descriptors...
2016: PloS One
https://www.readbyqxmd.com/read/27929431/internet-databases-of-the-properties-enzymatic-reactions-and-metabolism-of-small-molecules-search-options-and-applications-in-food-science
#3
REVIEW
Piotr Minkiewicz, Małgorzata Darewicz, Anna Iwaniak, Justyna Bucholska, Piotr Starowicz, Emilia Czyrko
Internet databases of small molecules, their enzymatic reactions, and metabolism have emerged as useful tools in food science. Database searching is also introduced as part of chemistry or enzymology courses for food technology students. Such resources support the search for information about single compounds and facilitate the introduction of secondary analyses of large datasets. Information can be retrieved from databases by searching for the compound name or structure, annotating with the help of chemical codes or drawn using molecule editing software...
December 6, 2016: International Journal of Molecular Sciences
https://www.readbyqxmd.com/read/27923813/the-chemical-basis-of-thiol-addition-to-nitro-conjugated-linoleic-acid-a-protective-cell-signaling-lipid
#4
Lucia Turell, Dario A Vitturi, E Laura Coitiño, Lourdes Lebrato, Matias N Moller, Camila Sagasti, Sonia R Salvatore, Steven R Woodcock, Beatriz Alvarez, Francisco J Schopfer
Nitroalkene fatty acids are formed in vivo and exert protective and anti-inflammatory effects via reversible Michael addition to thiol-containing proteins in key signaling pathways. Nitro-conjugated linoleic acid (NO2-CLA) is preferentially formed, constitutes the most abundant nitrated fatty acid in humans and contains two carbons that could potentially react with thiols, modulating signaling actions and levels. In this work, we examined the reactions of NO2-CLA with low molecular weight thiols (glutathione, cysteine, homocysteine, cysteinylglycine and β mercaptoethanol) and human serum albumin (HSA)...
December 6, 2016: Journal of Biological Chemistry
https://www.readbyqxmd.com/read/27923064/sparse-regression-based-structure-learning-of-stochastic-reaction-networks-from-single-cell-snapshot-time-series
#5
Anna Klimovskaia, Stefan Ganscha, Manfred Claassen
Stochastic chemical reaction networks constitute a model class to quantitatively describe dynamics and cell-to-cell variability in biological systems. The topology of these networks typically is only partially characterized due to experimental limitations. Current approaches for refining network topology are based on the explicit enumeration of alternative topologies and are therefore restricted to small problem instances with almost complete knowledge. We propose the reactionet lasso, a computational procedure that derives a stepwise sparse regression approach on the basis of the Chemical Master Equation, enabling large-scale structure learning for reaction networks by implicitly accounting for billions of topology variants...
December 2016: PLoS Computational Biology
https://www.readbyqxmd.com/read/27918597/seqplots-interactive-software-for-exploratory-data-analyses-pattern-discovery-and-visualization-in-genomics
#6
Przemyslaw Stempor, Julie Ahringer
Experiments involving high-throughput sequencing are widely used for analyses of chromatin function and gene expression. Common examples are the use of chromatin immunoprecipitation for the analysis of chromatin modifications or factor binding, enzymatic digestions for chromatin structure assays, and RNA sequencing to assess gene expression changes after biological perturbations. To investigate the pattern and abundance of coverage signals across regions of interest, data are often visualized as profile plots of average signal or stacked rows of signal in the form of heatmaps...
2016: Wellcome Open Res
https://www.readbyqxmd.com/read/27917893/new-insights-into-molecular-organization-of-human-neuraminidase-1-transmembrane-topology-and-dimerization-ability
#7
Pascal Maurice, Stéphanie Baud, Olga V Bocharova, Eduard V Bocharov, Andrey S Kuznetsov, Charlotte Kawecki, Olivier Bocquet, Beatrice Romier, Laetitia Gorisse, Maxime Ghirardi, Laurent Duca, Sébastien Blaise, Laurent Martiny, Manuel Dauchez, Roman G Efremov, Laurent Debelle
Neuraminidase 1 (NEU1) is a lysosomal sialidase catalyzing the removal of terminal sialic acids from sialyloconjugates. A plasma membrane-bound NEU1 modulating a plethora of receptors by desialylation, has been consistently documented from the last ten years. Despite a growing interest of the scientific community to NEU1, its membrane organization is not understood and current structural and biochemical data cannot account for such membrane localization. By combining molecular biology and biochemical analyses with structural biophysics and computational approaches, we identified here two regions in human NEU1 - segments 139-159 (TM1) and 316-333 (TM2) - as potential transmembrane (TM) domains...
December 5, 2016: Scientific Reports
https://www.readbyqxmd.com/read/27914066/computational-tools-for-allosteric-drug-discovery-site-identification-and-focus-library-design
#8
Wenkang Huang, Ruth Nussinov, Jian Zhang
Allostery is an intrinsic phenomenon of biological macromolecules involving regulation and/or signal transduction induced by a ligand binding to an allosteric site distinct from a molecule's active site. Allosteric drugs are currently receiving increased attention in drug discovery because drugs that target allosteric sites can provide important advantages over the corresponding orthosteric drugs including specific subtype selectivity within receptor families. Consequently, targeting allosteric sites, instead of orthosteric sites, can reduce drug-related side effects and toxicity...
2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/27914063/episweep-computationally-driven-reengineering-of-therapeutic-proteins-to-reduce-immunogenicity-while-maintaining-function
#9
Yoonjoo Choi, Deeptak Verma, Karl E Griswold, Chris Bailey-Kellogg
Therapeutic proteins are yielding ever more advanced and efficacious new drugs, but the biological origins of these highly effective therapeutics render them subject to immune surveillance within the patient's body. When recognized by the immune system as a foreign agent, protein drugs elicit a coordinated response that can manifest a range of clinical complications including rapid drug clearance, loss of functionality and efficacy, delayed infusion-like allergic reactions, more serious anaphylactic shock, and even induced auto-immunity...
2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/27914062/computational-design-of-ligand-binding-proteins
#10
Christine E Tinberg, Sagar D Khare
The ability to design novel small-molecule binding sites in proteins is a stringent test of our understanding of the principles of molecular recognition, and would have many practical applications, in synthetic biology and medicine. Here, we describe a computational method in the context of the macromolecular modeling suite Rosetta to designing proteins with sites featuring predetermined interactions to ligands of choice. The required inputs for the method are a model of the small molecule and the desired interactions (e...
2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/27914056/parallel-computational-protein-design
#11
Yichao Zhou, Bruce R Donald, Jianyang Zeng
Computational structure-based protein design (CSPD) is an important problem in computational biology, which aims to design or improve a prescribed protein function based on a protein structure template. It provides a practical tool for real-world protein engineering applications. A popular CSPD method that guarantees to find the global minimum energy solution (GMEC) is to combine both dead-end elimination (DEE) and A* tree search algorithms. However, in this framework, the A* search algorithm can run in exponential time in the worst case, which may become the computation bottleneck of large-scale computational protein design process...
2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/27914049/modeling-binding-affinity-of-pathological-mutations-for-computational-protein-design
#12
Miguel Romero-Durana, Chiara Pallara, Fabian Glaser, Juan Fernández-Recio
An important aspect of protein functionality is the formation of specific complexes with other proteins, which are involved in the majority of biological processes. The functional characterization of such interactions at molecular level is necessary, not only to understand biological and pathological phenomena but also to design improved, or even new interfaces, or to develop new therapeutic approaches. X-ray crystallography and NMR spectroscopy have increased the number of 3D protein complex structures deposited in the Protein Data Bank (PDB)...
2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/27914045/achievements-and-challenges-in-computational-protein-design
#13
Ilan Samish
Computational protein design (CPD), a yet evolving field, includes computer-aided engineering for partial or full de novo designs of proteins of interest. Designs are defined by a requested structure, function, or working environment. This chapter describes the birth and maturation of the field by presenting 101 CPD examples in a chronological order emphasizing achievements and pending challenges. Integrating these aspects presents the plethora of CPD approaches with the hope of providing a "CPD 101". These reflect on the broader structural bioinformatics and computational biophysics field and include: (1) integration of knowledge-based and energy-based methods, (2) hierarchical designated approach towards local, regional, and global motifs and the integration of high- and low-resolution design schemes that fit each such region, (3) systematic differential approaches towards different protein regions, (4) identification of key hot-spot residues and the relative effect of remote regions, (5) assessment of shape-complementarity, electrostatics and solvation effects, (6) integration of thermal plasticity and functional dynamics, (7) negative design, (8) systematic integration of experimental approaches, (9) objective cross-assessment of methods, and (10) successful ranking of potential designs...
2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/27913993/antifreeze-glycopeptides-from-structure-and-activity-studies-to-current-approaches-in-chemical-synthesis
#14
REVIEW
Małgorzata Urbańczyk, Jerzy Góra, Rafał Latajka, Norbert Sewald
Antifreeze glycopeptides (AFGPs) are a class of biological antifreeze agents found predominantly in Arctic and Antarctic species of fish. They possess the ability to regulate ice nucleation and ice crystal growth, thus creating viable life conditions at temperatures below the freezing point of body fluids. AFGPs usually consist of 4-55 repetitions of the tripeptide unit Ala-Ala-Thr that is O-glycosylated at the threonine side chains with β-D-galactosyl-(1 → 3)-α-N-acetyl-D-galactosamine. Due to their interesting properties and high antifreeze activity, they have many potential applications, e...
December 2, 2016: Amino Acids
https://www.readbyqxmd.com/read/27913356/a-framework-for-integrating-multiple-biological-networks-to-predict-microrna-disease-associations
#15
Wei Peng, Wei Lan, Zeng Yu, Jianxin Wang, Yi Pan
MicroRNAs have close relationship with human diseases. Therefore, identifying disease related MicroRNAs plays an important role in disease diagnosis, prognosis and therapy. However, designing an effective computational method which can make good use of various biological resources and correctly predict the associations between MicroRNA and disease is still a big challenge. Previous researchers have pointed out that there are complex relationships among microRNAs, diseases and environment factors. There are inter-relationships between microRNAs, diseases or environment factors based on their functional similarity or phenotype similarity or chemical structure similarity and so on...
November 29, 2016: IEEE Transactions on Nanobioscience
https://www.readbyqxmd.com/read/27910820/4d-bioprinting-the-next-generation-technology-for-biofabrication-enabled-by-stimuli-responsive-materials
#16
Yi-Chen Li, Yu Shrike Zhang, Ali Akpek, Su Ryon Shin, Ali Khademhosseini
Four-dimensional (4D) bioprinting, encompassing a wide range of disciplines including bioengineering, materials science, chemistry, and computer sciences, is emerging as the next-generation biofabrication technology. By utilizing stimuli-responsive materials and advanced three-dimensional (3D) bioprinting strategies, 4D bioprinting aims to create dynamic 3D patterned biological structures that can transform their shapes or behavior under various stimuli. In this review, we highlight the potential use of various stimuli-responsive materials for 4D printing and their extension into biofabrication...
December 2, 2016: Biofabrication
https://www.readbyqxmd.com/read/27903878/a-spiking-neural-model-of-adaptive-arm-control
#17
Travis DeWolf, Terrence C Stewart, Jean-Jacques Slotine, Chris Eliasmith
We present a spiking neuron model of the motor cortices and cerebellum of the motor control system. The model consists of anatomically organized spiking neurons encompassing premotor, primary motor, and cerebellar cortices. The model proposes novel neural computations within these areas to control a nonlinear three-link arm model that can adapt to unknown changes in arm dynamics and kinematic structure. We demonstrate the mathematical stability of both forms of adaptation, suggesting that this is a robust approach for common biological problems of changing body size (e...
November 30, 2016: Proceedings. Biological Sciences
https://www.readbyqxmd.com/read/27903819/towards-designing-new-nano-scale-protein-architectures
#18
REVIEW
Jana Aupič, Fabio Lapenta, Žiga Strmšek, Roman Jerala
The complexity of designed bionano-scale architectures is rapidly increasing mainly due to the expanding field of DNA-origami technology and accurate protein design approaches. The major advantage offered by polypeptide nanostructures compared with most other polymers resides in their highly programmable complexity. Proteins allow in vivo formation of well-defined structures with a precise spatial arrangement of functional groups, providing extremely versatile nano-scale scaffolds. Extending beyond existing proteins that perform a wide range of functions in biological systems, it became possible in the last few decades to engineer and predict properties of completely novel protein folds, opening the field of protein nanostructure design...
November 30, 2016: Essays in Biochemistry
https://www.readbyqxmd.com/read/27902924/simple-mechanisms-of-early-life-simulation-model-on-the-origin-of-semi-cells
#19
Adrian Klein, Martin Bock, Wolfgang Alt
The development of first cellular structures played an important role in the early evolution of life. Early evolution of life probably took place on a molecular level in a reactive environment. The iron-sulfur theory postulates the formation of cell-like structures on catalytic surfaces. Experiments show that H2S together with FeS and other metallic centers drive auto-catalytic surface reactions, in which organic molecules such as pyruvic and amino acids occur. It is questionable which mechanisms are needed to form cell-like structures under these conditions...
November 27, 2016: Bio Systems
https://www.readbyqxmd.com/read/27901606/protein-folding-prediction-in-a-cubic-lattice-in-hydrophobic-polar-model
#20
Nicola Yanev, Metodi Traykov, Peter Milanov, Borislav Yurukov
The tertiary structure of the proteins determines their functions. Therefore, the predicting of protein's tertiary structure, based on the primary amino acid sequence from long time, is the most important and challenging subject in biochemistry, molecular biology, and biophysics. One of the most popular protein structure prediction methods, called Hydrophobic-Polar (HP) model, is based on the observation that in polar environment hydrophobic amino acids are in the core of the molecule-in contact between them and more polar amino acids are in contact with the polar environment...
November 30, 2016: Journal of Computational Biology: a Journal of Computational Molecular Cell Biology
keyword
keyword
41524
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"