Read by QxMD icon Read

long non-coding RNA CVD

Stefan Haemmig, Viorel Simion, Mark W Feinberg
Less than 2% of the genome encodes for proteins. Accumulating studies have revealed a diverse set of RNAs derived from the non-coding genome. Among them, long non-coding RNAs (lncRNAs) have garnered widespread attention over recent years as emerging regulators of diverse biological processes including in cardiovascular disease (CVD). However, our knowledge of their mechanisms by which they control CVD-related gene expression and cell signaling pathways is still limited. Furthermore, only a handful of lncRNAs has been functionally evaluated in the context of vascular inflammation, an important process that underlies both acute and chronic disease states...
2018: Frontiers in Cardiovascular Medicine
Roopesh S Gangwar, Sanjay Rajagopalan, Rama Natarajan, Jeffrey A Deiuliis
Noncoding RNAs (ncRNA) include a diverse range of functional RNA species-microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) being most studied in pathophysiology. Cardiovascular morbidity is associated with differential expression of myriad miRNAs; miR-21, miR-155, miR-126, miR-146a/b, miR-143/145, miR-223, and miR-221 are the top 9 most reported miRNAs in hypertension and atherosclerotic disease. A single miRNA may have hundreds of messenger RNA targets, which makes a full appreciation of the physiologic ramifications of such broad-ranging effects a challenge...
January 12, 2018: American Journal of Hypertension
Abhishek K Singh, Binod Aryal, Xinbo Zhang, Yuhua Fan, Nathan L Price, Yajaira Suárez, Carlos Fernández-Hernando
Alterations in lipoprotein metabolism enhance the risk of cardiometabolic disorders including type-2 diabetes and atherosclerosis, the leading cause of death in Western societies. While the transcriptional regulation of lipid metabolism has been well characterized, recent studies have uncovered the importance of microRNAs (miRNAs), long-non-coding RNAs (lncRNAs) and RNA binding proteins (RBP) in regulating the expression of lipid-related genes at the posttranscriptional level. Work from several groups has identified a number of miRNAs, including miR-33, miR-122 and miR-148a, that play a prominent role in controlling cholesterol homeostasis and lipoprotein metabolism...
November 29, 2017: Seminars in Cell & Developmental Biology
Baron Arnone, Jake Y Chen, Gangjian Qin
Recent advancements in cell-based therapies for the treatment of cardiovascular disease (CVD) show continuing promise for the use of transplanted stem and cardiac progenitor cells (CPCs) to promote cardiac restitution. However, a detailed understanding of the molecular mechanisms that control the development of these cells remains incomplete and is critical for optimizing their use in such therapy. Long non-coding (lnc) RNA has recently emerged as a crucial class of regulatory molecules involved in directing a variety of critical biological processes including development, homeostasis and disease...
2017: PloS One
Albert Busch, Suzanne M Eken, Lars Maegdefessel
Non-coding RNA (ncRNA) is a class of genetic, epigenetic and translational regulators, containing short and long transcripts with intriguing abilities for use as biomarkers due to their superordinate role in disease development. In the past five years many of these have been investigated in cardiovascular diseases (CVD), mainly myocardial infarction (MI) and heart failure. To extend this view, we summarize the existing data about ncRNA as biomarker in the whole entity of CVDs by literature-based review and comparison of the identified candidates...
June 2016: Annals of Translational Medicine
Omar Faruq, Andrea Vecchione
Biomarkers are biological measures of a biological state. An ideal marker should be safe and easy to measure, cost efficient, modifiable with treatment, and consistent across gender and ethnic groups. To date, none of the available biomarkers satisfy all of these criteria. In addition, the major limitations of these markers are low specificity, sensitivity, and false positive results. Recently identified, microRNAs (miRNAs) are endogenous, evolutionarily conserved small non-coding RNA (about 22-25 nt long), also known as micro-coordinators of gene expression, which have been shown to be an effective tools to study the biology of diseases and to have great potential as novel diagnostic and prognostic biomarkers with high specificity and sensitivity...
2015: Frontiers in Medicine
Francesca Aguilo, Serena Di Cecilia, Martin J Walsh
The long non-coding RNA CDKN2B-AS1, commonly referred to as the A ntisense N on-coding R NA in the I NK4 L ocus (ANRIL), is a 3.8-kb-long RNA transcribed from the short arm of human chromosome 9 on p21.3 that overlaps a critical region encompassing three major tumor suppressor loci juxtaposed to the INK4b-ARF-INK4a gene cluster and the methyl-thioadenosine phosphorylase (MTAP) gene. Genome-wide association studies have identified this region with a remarkable and growing number of disease-associated DNA alterations and single nucleotide polymorphisms, which corresponds to increased susceptibility to human disease...
2016: Current Topics in Microbiology and Immunology
Leonardo Elia, Gianluigi Condorelli
Next-generation sequencing has greatly improved our knowledge of the mammalian transcriptome, identifying thousands of non-coding RNAs (ncRNAs), which are RNAs that rather than translate for proteins, have regulatory functions. Perhaps unsurprisingly, dysregulation of individual ncRNAs has been associated with the development of pathologies, including of the cardiovascular system. The best-characterized group of ncRNAs is represented by the short, highly conserved RNAs named microRNAs (miRNAs). This ncRNA species, which principally exerts an inhibitory action on gene expression, has been implicated in many cardiovascular diseases...
December 2015: Journal of Molecular and Cellular Cardiology
Yujia Yang, Yue Cai, Gengze Wu, Xinjian Chen, Yukai Liu, Xinquan Wang, Junyi Yu, Chuanwei Li, Xiongwen Chen, Pedro A Jose, Lin Zhou, Chunyu Zeng
Long non-coding RNAs (lncRNAs) have been reported to be involved in the pathogenesis of cardiovascular disease (CVD), but whether circulating lncRNAs can serve as a coronary artery disease (CAD), biomarker is not known. The present study screened lncRNAs by microarray analysis in the plasma from CAD patients and control individuals and found that 265 lncRNAs were differentially expressed. To find specific lncRNAs as possible CAD biomarker candidates, we used the following criteria for 174 up-regulated lncRNAs: signal intensity ≥8, fold change >2...
October 1, 2015: Clinical Science (1979-)
Fu-Rong Zeng, Li-Jun Tang, Ye He, R C Garcia
MicroRNAs (miRNAs) are evolutionarily conserved and naturally abundant molecules of single-stranded, non-coding RNA from ∼17 to 25 nucleotides long. MiRNAs act at post-transcriptional level either to suppress gene translation or to induce mRNA degradation, according to the degree of complementarity with their target sequences. MiR-155 is a typical representative of the miRNA family that plays a crucial role in cell differentiation and organism development. A number of studies have shown that miR-155 can not only regulate cell proliferation, apoptosis and lymphoma progression, but also plays an important part in various other physiological and pathological processes...
September 2015: Microbes and Infection
Aparna Duggirala, Francesca Delogu, Timothy G Angelini, Tanya Smith, Massimo Caputo, Cha Rajakaruna, Costanza Emanueli
An aneurysm is a local dilatation of a vessel wall which is >50% its original diameter. Within the spectrum of cardiovascular diseases, aortic aneurysms are among the most challenging to treat. Most patients present acutely after aneurysm rupture or dissection from a previous asymptomatic condition and are managed by open surgical or endovascular repair. In addition, patients may harbor concurrent disease contraindicating surgical intervention. Collectively, these factors have driven the search for alternative methods of identifying, monitoring and treating aortic aneurisms using less invasive approaches...
2015: Frontiers in Genetics
Jing Wang, Lingqiang Chen, Hongfei Li, Jin Yang, Zhiqiang Gong, Bing Wang, Xueling Zhao
Cardiovascular disease (CVD) is recognized as a major and increasing health problem affected older subjects in China, and clopidogrel has been widely used for treatment of CVD patients such as atherosclerosis, myocardial infarction, and myocardial ischaemia-reperfusion damage. However, the molecular mechanisms of clopidogrel for treatment of CVD are only partially understood. This study investigated the effects of clopidogrel on palmitic acid-induced damage of human vascular endothelial cells (HUVECs), and the molecular mechanisms of LncRNA HIF1A-AS1 in regulating the proliferation and apoptosis of HUVECs in vitro...
June 2015: Molecular and Cellular Biochemistry
Maria-Teresa Piccoli, Shashi Kumar Gupta, Thomas Thum
Cardiovascular diseases are currently the main cause of morbidity and mortality worldwide. Ischemic heart disease, in particular, is responsible for the majority of cardiac-related deaths. Given the negligible regenerative potential of the human myocardium, there is a strong need for therapeutic strategies aiming at enhancing cardiomyocyte survival and proliferation following injury or at inhibiting their death. MicroRNAs (miRNAs) are small non-coding RNA molecules regulating gene expression at a post-transcriptional level with important functions in cardiovascular physiology and disease...
December 2015: Journal of Molecular and Cellular Cardiology
Yanru Liu, Ruifeng Zhang, Kejing Ying
Long non‑coding RNAs (lncRNAs) represent a surprisingly novel field in mammalian transcriptome research. With the development of RNA sequencing technology and computational methods, lncRNAs have been demonstrated to have important roles in biological processes at the epigenetic, transcription and post‑transcriptional levels. In addition, the dysregulation of lncRNAs contributes to numerous diseases, including cancer and cardiovascular diseases. The present review discusses the important functions of lncRNAs in respiratory diseases, highlights the mechanistic roles which underlie lncRNAs in lung cancer as well as considers the current and future potential use of lncRNAs as novel biomarkers and therapeutic targets for the treatment of lung cancer...
June 2015: Molecular Medicine Reports
Gianluigi Condorelli, Michael V G Latronico, Elena Cavarretta
Over the last few years, the field of microribonucleic acid (miRNA) in cardiovascular biology and disease has expanded at an incredible pace. miRNAs are themselves part of a larger family, that of non-coding RNAs, the importance of which for biological processes is starting to emerge. miRNAs are ~22-nucleotide-long RNA sequences that can legate messenger (m)RNAs at partially complementary binding sites, and hence regulate the rate of protein synthesis by altering the stability of the targeted mRNAs. In the cardiovascular system, miRNAs have been shown to be critical regulators of development and physiology...
June 3, 2014: Journal of the American College of Cardiology
Philipp G Maass, Friedrich C Luft, Sylvia Bähring
Long non-coding RNAs (lncRNAs) interact with the nuclear architecture and are involved in fundamental biological mechanisms, such as imprinting, histone-code regulation, gene activation, gene repression, lineage determination, and cell proliferation, all by regulating gene expression. Understanding the lncRNA regulation of transcriptional or post-transcriptional gene regulation expands our knowledge of disease. Several associations between altered lncRNA function and gene expression have been linked to clinical disease phenotypes...
April 2014: Journal of Molecular Medicine: Official Organ of the "Gesellschaft Deutscher Naturforscher und Ärzte"
Claudio Iaconetti, Clarice Gareri, Alberto Polimeni, Ciro Indolfi
Large-scale analyses of mammalian transcriptomes have identified a significant number of different RNA molecules that are not translated into protein. In fact, the use of new sequencing technologies has identified that most of the genome is transcribed, producing a heterogeneous population of RNAs which do not encode for proteins (ncRNAs). Emerging data suggest that these transcripts influence the development of cardiovascular disease. The best characterized non-coding RNA family is represented by short highly conserved RNA molecules, termed microRNAs (miRNAs), which mediate a process of mRNA silencing through transcript degradation or translational repression...
2013: International Journal of Molecular Sciences
Ada Congrains, Kei Kamide, Mitsuru Ohishi, Hiromi Rakugi
ANRIL is a recently discovered long non-coding RNA encoded in the chromosome 9p21 region. This locus is a hotspot for disease-associated polymorphisms, and it has been consistently associated with cardiovascular disease, and more recently with several cancers, diabetes, glaucoma, endometriosis among other conditions. ANRIL has been shown to regulate its neighbor tumor suppressors CDKN2A/B by epigenetic mechanisms and thereby regulate cell proliferation and senescence. However, the clear role of ANRIL in the pathogenesis of these conditions is yet to be understood...
2013: International Journal of Molecular Sciences
Samir Ounzain, Stefania Crippa, Thierry Pedrazzini
Cardiovascular diseases and in particular heart failure are major causes of morbidity and mortality in the Western world. Recently, the notion of promoting cardiac regeneration as a means to replace lost cardiomyocytes in the damaged heart has engendered considerable research interest. These studies envisage the utilization of both endogenous and exogenous cellular populations, which undergo highly specialized cell fate transitions to promote cardiomyocyte replenishment. Such transitions are under the control of regenerative gene regulatory networks, which are enacted by the integrated execution of specific transcriptional programs...
April 2013: Biochimica et Biophysica Acta
Johan M Lorenzen, Filippo Martino, Thomas Thum
Epigenetics represents a phenomenon of altered heritable phenotypic expression of genetic information occurring without changes in DNA sequence. Epigenetic modifications control embryonic development, differentiation and stem cell (re)programming. These modifications can be affected by exogenous stimuli (e.g., diabetic milieu, smoking) and oftentimes culminate in disease initiation. DNA methylation has been studied extensively and represents a well-understood epigenetic mechanism. During this process cytosine residues preceding a guanosine in the DNA sequence are methylated...
March 2012: Basic Research in Cardiology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"