Read by QxMD icon Read

platelet phosphoproteomics

Stephanie Makhoul, Elena Walter, Oliver Pagel, Ulrich Walter, Albert Sickmann, Stepan Gambaryan, Albert Smolenski, René P Zahedi, Kerstin Jurk
Platelets are circulating sentinels of vascular integrity and are activated, inhibited, or modulated by multiple hormones, vasoactive substances or drugs. Endothelium- or drug-derived NO strongly inhibits platelet activation via activation of the soluble guanylate cyclase (sGC) and cGMP elevation, often in synergy with cAMP-elevation by prostacyclin. However, the molecular mechanisms and diversity of cGMP effects in platelets are poorly understood and sometimes controversial. Recently, we established the quantitative human platelet proteome, the iloprost/prostacyclin/cAMP/protein kinase A (PKA)-regulated phosphoproteome, and the interactions of the ADP- and iloprost/prostacyclin-affected phosphoproteome...
June 1, 2018: Nitric Oxide: Biology and Chemistry
Deane F Mosher, Emily M Wilkerson, Keren B Turton, Alexander S Hebert, Joshua J Coon
We recently identified and quantified >7,000 proteins in non-activated human peripheral blood eosinophils using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) and described phosphoproteomic changes that accompany acute activation of eosinophils by interleukin-5 (IL5) (1). These data comprise a treasure trove of information about eosinophils. We illustrate the power of label-free LC-MS/MS quantification by considering four examples: complexity of eosinophil STATs, contribution of immunoproteasome subunits to eosinophil proteasomes, complement of integrin subunits, and contribution of platelet proteins originating from platelet-eosinophil complexes to the overall proteome...
2017: Frontiers in Medicine
Bart L van den Eshof, Arie J Hoogendijk, Pelle J Simpson, Floris P J van Alphen, Sara Zanivan, Koen Mertens, Alexander B Meijer, Maartje van den Biggelaar
OBJECTIVE: Thrombin is the key serine protease of the coagulation cascade and mediates cellular responses by activation of PARs (protease-activated receptors). The predominant thrombin receptor is PAR1, and in endothelial cells (ECs), thrombin dynamically regulates a plethora of phosphorylation events. However, it has remained unclear whether thrombin signaling is exclusively mediated through PAR1. Furthermore, mechanistic insight into activation and inhibition of PAR1-mediated EC signaling is lacking...
October 2017: Arteriosclerosis, Thrombosis, and Vascular Biology
Adil R Sarhan, Justyna Szyroka, Shabana Begum, Michael G Tomlinson, Neil A Hotchin, John K Heath, Debbie L Cunningham
The Platelet Derived Growth Factor (PDGF) family of ligands have well established functions in the induction of cell proliferation and migration during development, tissue homeostasis and interactions between tumours and stroma. However, the mechanisms by which these actions are executed are incompletely understood. Here we report a differential phosphoproteomics study, using a SILAC approach, of PDGF-stimulated mouse embryonic fibroblasts (MEFs). 116 phospho-sites were identified as up-regulated and 45 down-regulated in response to PDGF stimulation...
June 21, 2017: Scientific Reports
Nicholas J Carruthers, Paul M Stemmer, Ben Chen, Frederick Valeriote, Xiaohua Gao, Subhash C Guatam, Jiajiu Shaw
UTL-5g is a novel small-molecule TNF-alpha modulator. It reduces cisplatin-induced side effects by protecting kidney, liver, and platelets, thereby increasing tolerance for cisplatin. UTL-5g also reduces radiation-induced acute liver toxicity. The mechanism of action for UTL-5g is not clear at the present time. A phosphoproteomic analysis to a depth of 4943 phosphopeptides and a luminescence-based transcription factor activity assay were used to provide complementary analyses of signaling events that were disrupted by UTL-5g in RAW 264...
September 15, 2017: European Journal of Pharmacology
Florian Beck, Jörg Geiger, Stepan Gambaryan, Fiorella A Solari, Margherita Dell'Aica, Stefan Loroch, Nadine J Mattheij, Igor Mindukshev, Oliver Pötz, Kerstin Jurk, Julia M Burkhart, Christian Fufezan, Johan W M Heemskerk, Ulrich Walter, René P Zahedi, Albert Sickmann
Adenosine diphosphate (ADP) enhances platelet activation by virtually any other stimulant to complete aggregation. It binds specifically to the G-protein-coupled membrane receptors P2Y1 and P2Y12, stimulating intracellular signaling cascades, leading to integrin αIIbβ3 activation, a process antagonized by endothelial prostacyclin. P2Y12 inhibitors are among the most successful antiplatelet drugs, however, show remarkable variability in efficacy. We reasoned whether a more detailed molecular understanding of ADP-induced protein phosphorylation could identify (1) critical hubs in platelet signaling toward aggregation and (2) novel molecular targets for antiplatelet treatment strategies...
January 12, 2017: Blood
Paula Vélez, Raymundo Ocaranza-Sánchez, Diego López-Otero, Lilian Grigorian-Shamagian, Isaac Rosa, Esteban Guitián, José María García-Acuña, José Ramón González-Juanatey, Ángel García
The platelet-specific collagen receptor glycoprotein VI (GPVI) is critical for the formation of arterial thrombosis in vivo. We analyzed GPVI-activated platelets from ST-elevation myocardial infarction (STEMI) patients and matched stable coronary artery disease (SCAD) controls in order to provide novel clues on the degree of involvement of GPVI signaling in the acute event. Firstly, platelets were isolated from systemic venous blood and activated with the GPVI specific agonist CRP (collagen-related peptide)...
December 22, 2016: Scientific Reports
Fiorella A Solari, Nadine J A Mattheij, Julia M Burkhart, Frauke Swieringa, Peter W Collins, Judith M E M Cosemans, Albert Sickmann, Johan W M Heemskerk, René P Zahedi
The Scott syndrome is a very rare and likely underdiagnosed bleeding disorder associated with mutations in the gene encoding anoctamin-6. Platelets from Scott patients are impaired in various Ca2+ -dependent responses, including phosphatidylserine exposure, integrin closure, intracellular protein cleavage, and cytoskeleton-dependent morphological changes. Given the central role of anoctamin-6 in the platelet procoagulant response, we used quantitative proteomics to understand the underlying molecular mechanisms and the complex phenotypic changes in Scott platelets compared with control platelets...
October 2016: Molecular & Cellular Proteomics: MCP
Adil R Sarhan, Trushar R Patel, Andrew J Creese, Michael G Tomlinson, Carina Hellberg, John K Heath, Neil A Hotchin, Debbie L Cunningham
Intracellular signaling pathways are reliant on protein phosphorylation events that are controlled by a balance of kinase and phosphatase activity. Although kinases have been extensively studied, the role of phosphatases in controlling specific cell signaling pathways has been less so. Leukocyte common antigen-related protein (LAR) is a member of the LAR subfamily of receptor-like protein tyrosine phosphatases (RPTPs). LAR is known to regulate the activity of a number of receptor tyrosine kinases, including platelet-derived growth factor receptor (PDGFR)...
June 2016: Molecular & Cellular Proteomics: MCP
Naveid A Ali, Jianmin Wu, Falko Hochgräfe, Howard Chan, Radhika Nair, Sunny Ye, Luxi Zhang, Ruth J Lyons, Mark Pinese, Hong Ching Lee, Nicola Armstrong, Christopher J Ormandy, Susan J Clark, Alexander Swarbrick, Roger J Daly
INTRODUCTION: Although aberrant tyrosine kinase signalling characterises particular breast cancer subtypes, a global analysis of tyrosine phosphorylation in mouse models of breast cancer has not been undertaken to date. This may identify conserved oncogenic pathways and potential therapeutic targets. METHODS: We applied an immunoaffinity/mass spectrometry workflow to three mouse models: murine stem cell virus-Neu, expressing truncated Neu, the rat orthologue of human epidermal growth factor receptor 2, Her2 (HER2); mouse mammary tumour virus-polyoma virus middle T antigen (PyMT); and the p53-/- transplant model (p53)...
2014: Breast Cancer Research: BCR
Clarissa Dickhut, Ingo Feldmann, Jörg Lambert, René P Zahedi
In the past few years, the focus of phosphoproteomics has shifted from merely qualitative to quantitative and targeted studies. Tryptic digestion is a critical step that directly affects quantification and that can be impaired by phosphorylation. Therefore, we systematically characterized the digestion efficiency of 19 nonmodified and phosphorylated model peptides. Whereas we quantified a strong reduction of tryptic cleavage within phosphorylated PKA motifs (R)-R-X-pS/pT and also R-X-X-pT sequences, (R)-R-X-pY sequences were almost unaffected...
June 6, 2014: Journal of Proteome Research
Maartje van den Biggelaar, Juan Ramon Hernández-Fernaud, Bart L van den Eshof, Lisa J Neilson, Alexander B Meijer, Koen Mertens, Sara Zanivan
Thrombin is the key serine protease of the coagulation cascade and a potent trigger of protease-activated receptor 1 (PAR1)-mediated platelet aggregation. In recent years, PAR1 has become an appealing target for anticoagulant therapies. However, the inhibitors that have been developed so far increase bleeding risk in patients, likely because they interfere with endogenous PAR1 signaling in the endothelium. Because of its complexity, thrombin-induced signaling in endothelial cells has remained incompletely understood...
March 20, 2014: Blood
Alejandro Zimman, Bjoern Titz, Evangelia Komisopoulou, Sudipta Biswas, Thomas G Graeber, Eugene A Podrez
Specific oxidized phospholipids (oxPCCD36) promote platelet hyper-reactivity and thrombosis in hyperlipidemia via the scavenger receptor CD36, however the signaling pathway(s) induced in platelets by oxPCCD36 are not well defined. We have employed mass spectrometry-based tyrosine, serine, and threonine phosphoproteomics for the unbiased analysis of platelet signaling pathways induced by oxPCCD36 as well as by the strong physiological agonist thrombin. oxPCCD36 and thrombin induced differential phosphorylation of 115 proteins (162 phosphorylation sites) and 181 proteins (334 phosphorylation sites) respectively...
2014: PloS One
Chad D Walls, Anton Iliuk, Yunpeng Bai, Mu Wang, W Andy Tao, Zhong-Yin Zhang
Phosphatase of regenerating liver 3 (PRL3) is suspected to be a causative factor toward cellular metastasis when in excess. To date, the molecular basis for PRL3 function remains an enigma, making efforts at distilling a concerted mechanism for PRL3-mediated metastatic dissemination very difficult. We previously discovered that PRL3 expressing cells exhibit a pronounced increase in protein tyrosine phosphorylation. Here we take an unbiased mass spectrometry-based approach toward identifying the phosphoproteins exhibiting enhanced levels of tyrosine phosphorylation with a goal to define the "PRL3-mediated signaling network...
December 2013: Molecular & Cellular Proteomics: MCP
Jordane Biarc, Robert J Chalkley, A L Burlingame, Ralph A Bradshaw
Receptor tyrosine kinases generally act by forming phosphotyrosine-docking sites on their own endodomains that propagate signals through cascades of post-translational modifications driven by the binding of adaptor/effector proteins. The pathways that are stimulated in any given receptor tyrosine kinase are a function of the initial docking sites that are activated and the availability of downstream participants. In the case of the Trk receptors, which are activated by nerve growth factor, there are only two established phosphotyrosine-docking sites (Tyr-490 and Tyr-785 on TrkA) that are known to be directly involved in signal transduction...
June 7, 2013: Journal of Biological Chemistry
Murat Cirit, Kyle G Grant, Jason M Haugh
Inhibition of the ubiquitin-proteasome protein degradation pathway has been identified as a viable strategy for anti-tumor therapy based on its broad effects on cell proliferation. By the same token, the variety of elicited effects confounds the interpretation of cell-based experiments using proteasome inhibitors such as MG132. It has been proposed that MG132 treatment reduces growth factor-stimulated phosphorylation of extracellular signal-regulated kinases (ERKs), at least in part through upregulation of dual specificity phosphatases (DUSPs)...
2012: PloS One
Michela Di Michele, Chris Van Geet, Kathleen Freson
Platelets are the fundamental players in primary hemostasis, but are also involved in several pathological conditions. The remarkable advances in proteomic methodologies have allowed a better understanding of the basic physiological pathways underlying platelet biology. In addition, recent platelet proteomics focused on disease conditions, helping to elucidate the molecular mechanisms of complex and/or unknown human disorders and to find novel biomarkers for early diagnosis and drug targets. The most common and innovative proteomic techniques, both gel-based and gel-free, used in platelet proteomics will be reviewed here...
August 2012: Expert Review of Proteomics
Yun Bai, Jiannong Li, Bin Fang, Arthur Edwards, Guolin Zhang, Marilyn Bui, Steven Eschrich, Soner Altiok, John Koomen, Eric B Haura
Driver tyrosine kinase mutations are rare in sarcomas, and patterns of tyrosine phosphorylation are poorly understood. To better understand the signaling pathways active in sarcoma, we examined global tyrosine phosphorylation in sarcoma cell lines and human tumor samples. Anti-phosphotyrosine antibodies were used to purify tyrosine phosphorylated peptides, which were then identified by liquid chromatography and tandem mass spectrometry. The findings were validated with RNA interference, rescue, and small-molecule tyrosine kinase inhibitors...
May 15, 2012: Cancer Research
Jordane Biarc, Robert J Chalkley, A L Burlingame, Ralph A Bradshaw
Stably transfected PC12 cells expressing a chimeric receptor composed of the extracellular domain of the platelet-derived growth factor receptor BB and the transmembrane and intracellular domains of TrkA, the nerve growth factor receptor, were stimulated for 20 min with platelet-derived growth factor and the resulting phosphoproteome was determined from affinity purified tryptic peptides identified by tandem MS (MS/MS) analyses. The changes in the levels of individual phosphorylation sites in stimulated cells versus control were ascertained by the stable isotope labeling of amino acids in cell culture technique...
May 2012: Molecular & Cellular Proteomics: MCP
Thomas Premsler, Urs Lewandrowski, Albert Sickmann, René Peiman Zahedi
Blood platelets are key players standing at the crossroads between physiologically occurring hemostasis and pathologic thrombus formation. As these cellular particles lack a nucleus, intra- and intercellular processes involved in platelet activity and function are almost exclusively regulated on the protein level. In particular, posttranslational protein modification by phosphorylation, which allows for a quick and highly dynamic transduction of cellular signals, is discussed in this context. In addition, since platelet activation and aggregation usually require surface contact with the surrounding tissue, special interest focuses on this contacting region, and hence on the subproteome of the platelet plasma membrane...
2011: Methods in Molecular Biology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"