Read by QxMD icon Read


Yu Ishibashi, Shusuke Oura, Kazuo Umemura
We examined the adsorption of DNA binding proteins on functionalized, single-walled carbon nanotubes (SWNTs). When SWNTs were functionalized with polyethylene glycol (PEG-SWNT), moderate adsorption of protein molecules was observed. In contrast, nanotubes functionalized with CONH2 groups (CONH2-SWNT) exhibited very strong interactions between the CONH2-SWNT and DNA binding proteins. Instead, when these SWNT surfaces were wrapped with DNA molecules (thymine 30-mers), protein binding was a little decreased. Our results revealed that DNA wrapped PEG-SWNT was one of the most promising candidates to realize DNA nanodevices involving protein reactions on DNA-SWNT surfaces...
February 15, 2017: European Biophysics Journal: EBJ
Shuchen Zhang, Lixing Kang, Xiao Wang, Lianming Tong, Liangwei Yang, Zequn Wang, Kuo Qi, Shibin Deng, Qingwen Li, Xuedong Bai, Feng Ding, Jin Zhang
The semiconductor industry is increasingly of the view that Moore's law-which predicts the biennial doubling of the number of transistors per microprocessor chip-is nearing its end. Consequently, the pursuit of alternative semiconducting materials for nanoelectronic devices, including single-walled carbon nanotubes (SWNTs), continues. Arrays of horizontal nanotubes are particularly appealing for technological applications because they optimize current output. However, the direct growth of horizontal SWNT arrays with controlled chirality, that would enable the arrays to be adapted for a wider range of applications and ensure the uniformity of the fabricated devices, has not yet been achieved...
February 15, 2017: Nature
Wensong Li, Tuanjie Du, Jinglong Lan, Changlei Guo, Yongjie Cheng, Huiying Xu, Chunhui Zhu, Fengqiu Wang, Zhengqian Luo, Zhiping Cai
We experimentally demonstrated a compact single-wall carbon-nanotube (SWNT)-based deep-red passively Q-switched Pr<sup>3+</sup>-doped ZBLAN all-fiber laser operating at 716 nm. A free-standing SWNT/polyvinyl alcohol composite film embedded between a pair of fiber connectors was employed as a saturable absorber (SA). The deep-red Q-switched operation is attributed to the combination of implementing a pair of fiber end-facet mirrors to achieve the linear laser resonator and incorporating a SWNT-SA into the cavity as a Q-switcher...
February 15, 2017: Optics Letters
Debanjan Polley, Animesh Patra, Anjan Barman, Rajib Kumar Mitra
We report the controllable conductivity of single-walled carbon nanotubes (SWNTs) and multiwalled carbon nanotubes with their surface walls decorated by gold nanoparticles (Au NPs) with varying concentration in terahertz (THz) frequency range. Colloidal Au NPs of nominal diameter ∼15  nm are synthesized by the reduction of gold chloride solution using tri-sodium citrate. A simple chemical route is followed to attach Au NPs on the surfaces of both types of carbon nanotubes (CNTs). The attachment of Au NPs on the sidewalls of CNTs is confirmed by UV-visible spectroscopy and scanning electron microscope images...
February 1, 2017: Applied Optics
Jackson T Del Bonis-O'Donnell, Abraham Beyene, Linda Chio, Gözde Demirer, Darwin Yang, Markita P Landry
Semiconducting single-wall carbon nanotubes (SWNTs) are a class of optically active nanomaterial that fluoresce in the near infrared, coinciding with the optical window where biological samples are most transparent. Here, we outline techniques to adsorb amphiphilic polymers and polynucleic acids onto the surface of SWNTs to engineer their corona phases and create novel molecular sensors for small molecules and proteins. These functionalized SWNT sensors are both biocompatible and stable. Polymers are adsorbed onto the nanotube surface either by direct sonication of SWNTs and polymer or by suspending SWNTs using a surfactant followed by dialysis with polymer...
January 10, 2017: Journal of Visualized Experiments: JoVE
Chunyue Miao, Ruihan Bai, Shujuan Xu, Tingting Hong, Yibing Ji
Carboxylated single-walled carbon nanotubes (c-SWNTs) were incorporated into poly(glycidylmethacrylate-co-ethylene glycol dimethacrylate) [poly(GMA-co-EDMA)] monoliths to develop a novel monolithic stationary phase for capillary electrochromatography. The prepared monoliths were characterized by scanning electron microscopy and nitrogen adsorption. Additionally, pepsin, which is a chiral selector, was bonded to the c-SWNT-incorporated monoliths via epoxide groups as reactive sites and glutaraldehyde as the spacer...
January 10, 2017: Journal of Chromatography. A
Feng Yang, Xiao Wang, Jia Si, Xiulan Zhao, Kuo Qi, Chuanhong Jin, Zeyao Zhang, Meihui Li, Daqi Zhang, Juan Yang, Zhiyong Zhang, Zhi Xu, Lian-Mao Peng, Xuedong Bai, Yan Li
Semiconducting single-walled carbon nanotubes (s-SWNTs) with diameters of 1.0-1.5 nm (with similar bandgap to crystalline silicon) are highly desired for nanoelectronics. Up to date, the highest reported content of s-SWNTs as-grown is ∼97%, which is still far below the daunting requirements of high-end applications. Herein, we report a feasible and green pathway to use H2O vapor to modulate the structure of the intermetallic W6Co7 nanocrystals. By using the resultant W6Co7 nanocatalysts with a high percentage of (1 0 10) planes as structural templates, we realized the direct growth of s-SWNT with the purity of ∼99%, in which ∼97% is (14,4) tubes (diameter 1...
January 24, 2017: ACS Nano
Azadeh Hashem Nia, Hossein Eshghi, Kalil Abnous, Mohammad Ramezani
A series of polyethylenimine conjugates of single-walled carbon nanotube (PEI-SWNT) containing bioreducible disulfide bonds was synthesized and evaluated for their transfection efficiency. Different molecular weights of polyethylenimine (PEI) were thiolated with different mole ratio of 2-iminothiolane (2-IT). Single-walled carbon nanotube (SWNT) was first carboxylated and then three different cysteine-functionalized SWNT formulations were synthesized via introduced linkers: a) carbonyl group b) spermidine c) 1,8-diamino 3,6-dioxo octane...
January 16, 2017: European Journal of Pharmaceutical Sciences
Craig A Milroy, Seonpil Jang, Toshihiko Fujimori, Ananth Dodabalapur, Arumugam Manthiram
Improved thin-film microbatteries are needed to provide appropriate energy-storage options to power the multitude of devices that will bring the proposed "Internet of Things" network to fruition (e.g., active radio-frequency identification tags and microcontrollers for wearable and implantable devices). Although impressive efforts have been made to improve the energy density of 3D microbatteries, they have all used low energy-density lithium-ion chemistries, which present a fundamental barrier to miniaturization...
January 11, 2017: Small
Jing Wang, Fang Fang, Tao Yuan, Junhe Yang, Liang Chen, Chi Yao, Shiyou Zheng, Dalin Sun
A unique 3D graphene-single walled carbon nanotube (G-SWNT) aerogel anchored with SnO2 nanoparticles (SnO2@G-SWCNT) is fabricated by the hydrothermal self-assembly process. The influences of mass ratio of SWCNT to graphene on structure and electrochemical properties of SnO2@G-SWCNT are investigated systematically. The SnO2@G-SWCNT composites show excellent electrochemical performance in Li-ion batteries; for instance, at a current density of 100 mA g(-1), a specific capacity of 758 mAh g(-1) was obtained for the SnO2@G-SWCNT with 50% SWCNT in G-SWCNT and the Coulombic efficiency is close to 100% after 200 cycles; even at current density of 1 A g(-1), it can still maintain a stable specific capacity of 537 mAh g(-1) after 300 cycles...
February 1, 2017: ACS Applied Materials & Interfaces
Yifan Li, Yi Zhou, Xuyan Zhou, Long Wang, Hui Li
Molecular dynamics simulation has been employed to study the encapsulation of boron nitride-graphene nanoribbons (BNCNRs) in a single-walled carbon nanotube (SWNT). The simulation results show that a helical BNCNR with large curvature can uncoil repeatedly and spontaneously in the SWNT, like the unwinding of the DNA in the nucleus. The uncoiling of the BNCNRs is accompanied by a system energy exchange between non-bonding energy and elastic potential energy due to the competition between the induction of graphene nanoribbon (GNR) segments and the resistance of boron nitride nanoribbon (BNNR) segments...
January 18, 2017: Physical Chemistry Chemical Physics: PCCP
Joon Hyub Kim, Min-Jung Song, Ki Beom Kim, Joon-Hyung Jin, Nam Ki Min
The effect of cleaning the surface of single-walled carbon nanotube (SWNT) networks by thermal and the O₂ plasma treatments is presented in terms of NH₃ gas sensing characteristics. The goal of this work is to determine the relationship between the physicochemical properties of the cleaned surface (including the chemical composition, crystal structure, hydrophilicity, and impurity content) and the sensitivity of the SWNT network films to NH₃ gas. The SWNT networks are spray-deposited on pre-patterned Pt electrodes, and are further functionalized by heating on a programmable hot plate or by O₂ plasma treatment in a laboratory-prepared plasma chamber...
December 30, 2016: Sensors
Zi-He Jin, Yan-Ling Liu, Jing-Jing Chen, Si-Liang Cai, Jia-Quan Xu, Wei-Hua Huang
Carbon nanotube (CNT)-based flexible sensors have been intensively developed for physical sensing. However, great challenges remain in fabricating stretchable CNT films with high electrochemical performance for real-time chemical sensing, due to large sheet resistance of CNT film and further resistance increase caused by separation between each CNT during stretching. Herein, we develop a facile and versatile strategy to construct single-walled carbon nanotubes (SWNTs)-based stretchable and transparent electrochemical sensors, by coating and binding each SWNT with conductive polymer...
February 7, 2017: Analytical Chemistry
Ghada I Koleilat, Michael Vosgueritchian, Ting Lei, Yan Zhou, Debora W Lin, Franziska Lissel, Pei Lin, John W F To, Tian Xie, Kemar England, Yue Zhang, Zhenan Bao
Semiconducting single-walled carbon nanotube (s-SWNT) light sensitized devices, such as infrared photodetectors and solar cells, have recently been widely reported. Despite their excellent individual electrical properties, efficient carrier transport from one carbon nanotube to another remains a fundamental challenge. Specifically, photovoltaic devices with active layers made from s-SWNTs have suffered from low efficiencies caused by three main challenges: the overwhelming presence of high-bandgap polymers in the films, the weak bandgap offset between the LUMO of the s-SWNTs and the acceptor C60, and the limited exciton diffusion length from one SWNT to another of around 5 nm that limits the carrier extraction efficiency...
December 27, 2016: ACS Nano
Wang Gao, Yun Chen, Qing Jiang
Discriminating between metallic (M) and semiconducting (S) single-walled carbon nanotubes (SWNTs) remains a fundamental challenge in the field of nanotechnology. We address this issue by studying the adsorption of the isotropic atoms Xe, Kr, and a highly anisotropic molecule n heptane on M- and S-SWNTs with density functional theory that includes many-body dispersion forces. We find that the distinct polarizabilities of M- and S-SWNTs exhibit significantly different physisorption properties, which are also strongly controlled by the SWNT's diameter, adsorption site, adsorbate coverage, and the adsorbate's anisotropy...
December 9, 2016: Physical Review Letters
Andrei A Eliseev, Nikolay S Falaleev, Nikolay I Verbitskiy, Andrei A Volykhov, Lada V Yashina, Andrei S Kumskov, Victoria G Zhigalina, Alexander L Vasiliev, Alexey V Lukashin, Jeremy Sloan, Nikolay A Kiselev
The structural organization of compounds in a confined space of nanometer-scale cavities is of fundamental importance for understanding the basic principles for atomic structure design at the nanolevel. Here, we explore size-dependent structure relations between one-dimensional PbTe nanocrystals and carbon nanotube containers in the diameter range of 2.0-1.25 nm using high-resolution transmission electron microscopy and ab initio calculations. Upon decrease of the confining volume, one-dimensional crystals reveal gradual thinning, with the structure being cut from the bulk in either a <110> or a <100> growth direction until a certain limit of ∼1...
January 18, 2017: Nano Letters
Ahmad R T Nugraha, Eddwi H Hasdeo, Riichiro Saito
The pulse-train technique within ultrafast pump-probe spectroscopy is theoretically investigated to excite a specific coherent phonon mode while suppressing the other phonon modes generated in single-wall carbon nanotubes (SWNTs). In particular, we focus on the selectivity of the radial breathing mode (RBM) and the G-band for a given SWNT. We find that if the repetition period of the pulse train matches with the integer multiple of the RBM phonon period, the RBM amplitude can be maintained while the amplitudes of the other modes are suppressed...
February 8, 2017: Journal of Physics. Condensed Matter: An Institute of Physics Journal
Seung-Hoon Lee, Yong Xu, Dongyoon Khim, Won-Tae Park, Dong-Yu Kim, Yong-Young Noh
Charge transport in carbon nanotube network transistors strongly depends on the properties of the gate dielectric that is in direct contact with the semiconducting carbon nanotubes. In this work, we investigate the dielectric effects on charge transport in polymer-sorted semiconducting single-walled carbon nanotube field-effect transistors (s-SWNT-FETs) by using three different polymer insulators: A low-permittivity (εr) fluoropolymer (CYTOP, εr = 1.8), poly(methyl methacrylate) (PMMA, εr = 3.3), and a high-εr ferroelectric relaxor [P(VDF-TrFE-CTFE), εr = 14...
November 30, 2016: ACS Applied Materials & Interfaces
Jianing An, Zhaoyao Zhan, Gengzhi Sun, Hari Krishna Salila Vijayalal Mohan, Jinyuan Zhou, Young-Jin Kim, Lianxi Zheng
Leveraging the unique properties of single-walled carbon nanotube (SWNT) intramolecular junctions (IMJs) in innovative nanodevices and next-generation nanoelectronics requires controllable, repeatable, and large-scale preparation, together with rapid identification and comprehensive characterization of such structures. Here we demonstrate SWNT IMJs through directly growing ultralong SWNTs on trenched substrates. It is found that the trench configurations introduce axial strain in partially suspended nanotubes, and promote bending deformation in the vicinity of the trench edges...
December 1, 2016: Scientific Reports
Pan Li, Jin Zhang
The synthesis of SWNTs has achieved great success with the development of synthetic methodologies. From the viewpoint of exploiting the exceptional electrical properties of single-walled carbon nanotubes (SWNTs) in advanced applications, one of the most difficult challenges is how to assemble the SWNTs with high degrees of alignment and purity in electronic conducting (mainly semiconducting) behavior into functional nanodevices. Numerous approaches have been developed to reach this goal, which could be divided into two categories...
December 2016: Topics in Current Chemistry (Journal)
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"