Read by QxMD icon Read

Smart touch

Tianzhao Bu, Tianxiao Xiao, Zhiwei Yang, Guoxu Liu, Xianpeng Fu, Jinhui Nie, Tong Guo, Yaokun Pang, Junqing Zhao, Fengben Xi, Chi Zhang, Zhong Lin Wang
Smart skin is expected to be stretchable and tactile for bionic robots as the medium with the ambient environment. Here, a stretchable triboelectric-photonic smart skin (STPS) is reported that enables multidimensional tactile and gesture sensing for a robotic hand. With a grating-structured metal film as the bioinspired skin stripe, the STPS exhibits a tunable aggregation-induced emission in a lateral tensile range of 0-160%. Moreover, the STPS can be used as a triboelectric nanogenerator for vertical pressure sensing with a maximum sensitivity of 34 mV Pa-1 ...
March 13, 2018: Advanced Materials
Kellie B Emmerson, Katherine E Harding, Kylee J Lockwood, Nicholas F Taylor
BACKGROUND: Allied health professionals working in rehabilitation often prescribe home exercise programs. Smart technology offers an alternative format for presentation of home exercise programs with potential advantages over traditional paper-based programs, but how do patients feel about this? DESIGN: This qualitative analysis was part of a convergent mixed methods design, using in depth, semi-structured interviews to explore the lived experience of patients utilising touch screen tablets to support an upper limb home exercise program post stroke...
March 11, 2018: Australian Occupational Therapy Journal
Ibrahim Raza, Awais Raza, Syed Ahmad Razaa, Ahmad Bani Sadar, Ahmad Uzair Qureshi, Usama Talib, Gerald Chi
BACKGROUND: The use of smartphones with touch screens has become a norm for healthcare professionals (HCP). The risk of smart screen contamination has been proven, and guidelines are available to deal with possible contamination. A large number of smartphone users apply plastic or glass screen protectors onto their mobile phone screens to prevent scratches. However, these materials are not scratch proof, and their antipathogenic properties have not been studied. METHODS: We have conducted a study to determine the frequency of smartphone screen protector contamination and compared the data with contamination on the bare area on the same mobile screens...
December 26, 2017: Curēus
Jivago Serrado Nunes, Nelson Castro, Sergio Gonçalves, Nélson Pereira, Vitor Correia, Senentxu Lanceros-Mendez
The market for interactive platforms is rapidly growing, and touchscreens have been incorporated in an increasing number of devices. Thus, the area of smart objects and devices is strongly increasing by adding interactive touch and multimedia content, leading to new uses and capabilities. In this work, a flexible screen printed sensor matrix is fabricated based on silver ink in a polyethylene terephthalate (PET) substrate. Diamond shaped capacitive electrodes coupled with conventional capacitive reading electronics enables fabrication of a highly functional capacitive touchpad, and also allows for the identification of marked objects...
December 1, 2017: Sensors
Xiaoliang Chen, Kaushik Parida, Jiangxin Wang, Jiaqing Xiong, Meng-Fang Lin, Jinyou Shao, Pooi See Lee
Smart sensing electronic devices with good transparency, high stretchability, and self-powered sensing characteristics are essential in wearable health monitoring systems. This paper innovatively proposes a stretchable nanocomposite nanogenerator with good transparency that can be conformally attached to the human body to harvest biomechanical energy and monitor physiological signals. The work reports an innovative device that uses sprayed silver nanowires as transparent electrodes and sandwiches a nanocomposite of piezoelectric BaTiO3 and polydimethylsiloxane as the sensing layer, which exhibits good transparency and mechanical transformability with stretchable, foldable, and twistable properties...
December 6, 2017: ACS Applied Materials & Interfaces
M S A Noman Ranak, Saiful Azad, Nur Nadiah Hanim Binti Mohd Nor, Kamal Z Zamli
Due to recent advancements and appealing applications, the purchase rate of smart devices is increasing at a higher rate. Parallely, the security related threats and attacks are also increasing at a greater ratio on these devices. As a result, a considerable number of attacks have been noted in the recent past. To resist these attacks, many password-based authentication schemes are proposed. However, most of these schemes are not screen size independent; whereas, smart devices come in different sizes. Specifically, they are not suitable for miniature smart devices due to the small screen size and/or lack of full sized keyboards...
2017: PloS One
Chunya Wang, Kailun Xia, Mingchao Zhang, Muqiang Jian, Yingying Zhang
Flexible skin-mimicking electronics are highly desired for development of smart human-machine interfaces and wearable human-health monitors. Human skins are able to simultaneously detect different information, such as touch, friction, temperature, and humidity. However, due to the mutual interferences of sensors with different functions, it is still a big challenge to fabricate multifunctional electronic skins (E-skins). Herein, a combo temperature-pressure E-skin is reported through assembling a temperature sensor and a strain sensor in both of which flexible and transparent silk-nanofiber-derived carbon fiber membranes (SilkCFM) are used as the active material...
November 3, 2017: ACS Applied Materials & Interfaces
E García-Cruz, A Bretonnet, A Alcaraz
OBJECTIVES: We aimed to explore the potential benefits of using smart glasses - wearable computer optical devices with touch-less command features - in the surgery room and in outpatient care settings in urology. MATERIALS AND METHODS: Between April and November 2015, 80 urologists were invited to use Google Glass in their daily surgical and clinical practice, and to share them with other urologists. Participants rated the usefulness of smart glasses on a 10-point scale, and provided insights on their potential benefits in a telephone interview...
October 13, 2017: Actas Urologicas Españolas
Michael S Borofsky, Casey A Dauw, Nadya York, Colin Terry, James E Lingeman
High fluid intake is an effective preventative strategy against recurrent kidney stones but is known to be challenging to achieve. Recently, a smart water bottle (Hidrate Spark™, Minneapolis, MN) was developed as a non-invasive fluid intake monitoring system. This device could help patients who form stones from low urine volume achieve sustainable improvements in hydration, but has yet to be validated in a clinical setting. Hidrate Spark™ uses capacitive touch sensing via an internal sensor. It calculates volume measurements by detecting changes in water level and sends data wirelessly to users' smartphones through an application...
October 4, 2017: Urolithiasis
Kee-Sun Sohn, Jiyong Chung, Min-Young Cho, Suman Timilsina, Woon Bae Park, Myungho Pyo, Namsoo Shin, Keemin Sohn, Ji Sik Kim
Complicated structures consisting of multi-layers with a multi-modal array of device components, i.e., so-called patterned multi-layers, and their corresponding circuit designs for signal readout and addressing are used to achieve a macroscale electronic skin (e-skin). In contrast to this common approach, we realized an extremely simple macroscale e-skin only by employing a single-layered piezoresistive MWCNT-PDMS composite film with neither nano-, micro-, nor macro-patterns. It is the deep machine learning that made it possible to let such a simple bulky material play the role of a smart sensory device...
September 11, 2017: Scientific Reports
Zuqing Yuan, Tao Zhou, Yingying Yin, Ran Cao, Congju Li, Zhong Lin Wang
Tactile sensors with large-scale array and high sensitivity is essential for human-machine interaction, smart wearable devices, and mobile networks. Here, a transparent and flexible triboelectric sensing array (TSA) with fingertip-sized pixels is demonstrated by integrating ITO electrodes, FEP film, and signal transmission circuits on an undivided palm-sized polyethylene terephthalate substrate. The sensing pixels can be triggered by the corresponding external contact to induce the electrostatic potential in the transparent electrodes without power consumption, which is individually recognized by the sensor...
August 22, 2017: ACS Nano
Prakriti Adhikary, Dipankar Mandal
We have prepared a flexible polymer composite film containing poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) and Zn(2+) for the fabrication of a multifunctional piezoelectric based nanogenerator (MFNG), where a traditional electrical poling treatment was avoided. The desirable amount of Zn(2+) yields more than 99% of electro-active phases in the P(VDF-HFP) matrix that co-operates to enhance the dielectric properties of the composite film via hydrogen bonding interactions. In situ thermal Fourier transform infrared (FT-IR) spectroscopy affirms the improved thermal stability of the electro-active β-phase and the β→γ phase transition temperature in the Zn(2+) doped composite film...
July 21, 2017: Physical Chemistry Chemical Physics: PCCP
Prina Mehta, Rita Haj-Ahmad, Ali Al-Kinani, Muhammad Sohail Arshad, Ming-Wei Chang, Raid G Alany, Zeeshan Ahmad
Drug-delivery approaches have diversified over the last two decades with the emergence of nanotechnologies, smart polymeric systems and multimodal functionalities. The intended target for specific treatment of disease is the key defining developing parameter. One such area which has undergone significant advancements relates to ocular delivery. This has been expedited by the development of material advancement, mechanistic concepts and through the deployment of advanced process technologies. This review will focus on the developments within lens-based drug delivery while touching on conventional and current methods of topical ocular drug delivery...
July 2017: Therapeutic Delivery
Fanhong Chen, Pengbo Wan, Haijun Xu, Xiaoming Sun
Flexible transparent electronic devices have recently gained immense popularity in smart wearable electronics and touch screen devices, which accelerates the development of the portable power sources with reliable flexibility, robust transparency and integration to couple these electronic devices. For potentially coupled as energy storage modules in various flexible, transparent and portable electronics, the flexible transparent supercapacitors are developed and assembled from hierarchical nanocomposite films of reduced graphene oxide (rGO) and aligned polyaniline (PANI) nanoarrays upon their synergistic advantages...
May 17, 2017: ACS Applied Materials & Interfaces
Eran Leshem, Cory M Tschabrunn, Fernando M Contreras-Valdes, Israel Zilberman, Elad Anter
BACKGROUND: An in vivo animal thigh model is the standard technique for evaluation of ablation catheter technologies, including efficacy and safety of ablation. However, the biophysics of ablation in a thigh model may not be similar to a beating heart. OBJECTIVE: The purpose of this study was to compare efficacy and safety of ablation between a thigh preparation model and a beating heart. METHODS: In 7 swine, radiofrequency ablation using a 3...
August 2017: Heart Rhythm: the Official Journal of the Heart Rhythm Society
Benedikt A Poser, Kawin Setsompop
The SNR and CNR benefits of ultra-high field (UHF) have helped push the envelope of achievable spatial resolution in MRI. For applications based on susceptibility contrast where there is a large CNR gain, high quality sub-millimeter resolution imaging is now being routinely performed, particularly in fMRI and phase imaging/QSM. This has enabled the study of structure and function of very fine-scale structures in the brain. UHF has also helped push the spatial resolution of many other MRI applications as will be outlined in this review...
April 6, 2017: NeuroImage
Tao Li, Jingdian Zou, Fei Xing, Meng Zhang, Xia Cao, Ning Wang, Zhong Lin Wang
Triboelectric nanogenerators (TENGs) can be applied for the next generation of artificial intelligent products, where skin-like tactile sensing advances the ability of robotics to feel and interpret environment. In this paper, a flexible and thin tactile sensor was developed on the basis of dual-mode TENGs. The effective transduction of touch and pressure stimulus into independent and interpretable electrical signals permits the instantaneous sensing of location and pressure with a plane resolution of 2 mm, a high-pressure-sensing sensitivity up to 28 mV·N(-1), and a linear pressure detection ranging from 40 to 140 N...
April 25, 2017: ACS Nano
Svenn-Arne Dragly, Milad Hobbi Mobarhan, Andreas Våvang Solbrå, Simen Tennøe, Anders Hafreager, Anders Malthe-Sørenssen, Marianne Fyhn, Torkel Hafting, Gaute T Einevoll
Educational software (apps) can improve science education by providing an interactive way of learning about complicated topics that are hard to explain with text and static illustrations. However, few educational apps are available for simulation of neural networks. Here, we describe an educational app, Neuronify, allowing the user to easily create and explore neural networks in a plug-and-play simulation environment. The user can pick network elements with adjustable parameters from a menu, i.e., synaptically connected neurons modelled as integrate-and-fire neurons and various stimulators (current sources, spike generators, visual, and touch) and recording devices (voltmeter, spike detector, and loudspeaker)...
March 2017: ENeuro
Emil Jovanov, Vindhya R Nallathimmareddygari, Jonathan E Pryor
The rapid growth of Internet of Things (IoT) and miniature wearable biosensors have generated new opportunities for personalized eHealth and mHealth services. Smart objects equipped with physiological sensors can provide robust monitoring of activities of daily living and context for wearable physiological sensors. We present a case study of an intelligent water bottle that can precisely measure the amount of liquid in the bottle, monitor activity using inertial sensors, and physiological parameters using a touch and photoplethysmographic sensor...
August 2016: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Hyunhyub Ko, Ali Javey
Biological systems found in nature provide excellent stimuli-responsive functions. The camouflage adaptation of cephalopods (octopus, cuttlefish), rapid stiffness change of sea cucumbers, opening of pine cones in response to humidity, and rapid closure of Venus flytraps upon insect touch are some examples of nature's smart systems. Although current technologies are still premature to mimic these sophisticated structures and functions in smart biological systems, recent work on stimuli-responsive programmable matter has shown great progress...
March 6, 2017: Accounts of Chemical Research
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"