Read by QxMD icon Read


Tagbo H R Niepa, Hao Wang, Jeremy L Gilbert, Dacheng Ren
Antibiotic resistance is a major challenge to the treatment of bacterial infections associated with medical devices and biomaterials. One important intrinsic mechanism of such resistance is the formation of persister cells that are phenotypic variants of microorganisms and highly tolerant to antibiotics. Recently, we reported a new approach to eradicating persister cells of Pseudomonas aeruginosa using low-level direct electrochemical current (DC) and synergy with the antibiotic tobramycin. To further understand the underlying mechanism and develop this technology toward possible medical applications, we investigated the electricidal activities of non-metallic biomaterial on persister and biofilm cells of P...
March 1, 2017: Acta Biomaterialia
Cassandra L Brinkman, Suzannah M Schmidt-Malan, Melissa J Karau, Kerryl Greenwood-Quaintance, Daniel J Hassett, Jayawant N Mandrekar, Robin Patel
Bacterial biofilms may form on indwelling medical devices such as prosthetic joints, heart valves and catheters, causing challenging-to-treat infections. We have previously described the 'electricidal effect', in which bacterial biofilms are decreased following exposure to direct electrical current. Herein, we sought to determine if the decreased bacterial quantities are due to detachment of biofilms or cell death and to investigate the role that reactive oxygen species (ROS) play in the observed effect. Using confocal and electron microscopy and flow cytometry, we found that direct current (DC) leads to cell death and changes in the architecture of biofilms formed by Gram-positive and Gram-negative bacteria...
2016: PloS One
Wojciech Spisak, Andrzej Chlebicki, Mariusz Kaszczyszyn
Today, fungicides are part of the basic tool kit for indoor surface maintenance. However, fungi develop resistance to fungicides, which consequently accelerates the evolution of virulence. Fungicides also carry the risk of adverse effects in humans. Galvanic microcells are a new tool for fungal control on indoor surfaces. We used two types of electrodes, Zn and Cu, with two potential anti-fungal mechanisms: the oligodynamic action of the metal ions themselves and the electricidal effect of the current between the electrodes...
October 27, 2016: Scientific Reports
Suzannah M Schmidt-Malan, Melissa J Karau, Julia Cede, Kerryl E Greenwood-Quaintance, Cassandra L Brinkman, Jayawant N Mandrekar, Robin Patel
Bacterial biofilms are difficult to treat using available antimicrobial agents, so new antibiofilm strategies are needed. We previously showed that 20, 200, and 2,000 μA of electrical current reduced bacterial biofilms of Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa. Here, we tested continuous direct current at lower amperages, intermittent direct current, and combinations of surface materials (Teflon or titanium) and electrode compositions (stainless steel, graphite, titanium, or platinum) against S...
August 2015: Antimicrobial Agents and Chemotherapy
Jose L Del Pozo, Mark S Rouse, Gorane Euba, Cheol-In Kang, Jayawant N Mandrekar, James M Steckelberg, Robin Patel
Treatment with low-amperage (200 microA) electrical current was compared to intravenous doxycycline treatment or no treatment in a rabbit model of Staphylococcus epidermidis chronic foreign body osteomyelitis to determine if the electricidal effect is active in vivo. A stainless steel implant and 10(4) CFU of planktonic S. epidermidis were placed into the medullary cavity of the tibia. Four weeks later, rabbits were assigned to one of three groups with treatment administered for 21 days. The groups included those receiving no treatment (n = 10), intravenous doxycycline (n = 14; 8 mg/kg of body weight three times per day), and electrical current (n = 15; 200 microA continuous delivery)...
October 2009: Antimicrobial Agents and Chemotherapy
Jose L del Pozo, Mark S Rouse, Jayawant N Mandrekar, James M Steckelberg, Robin Patel
The activity of electrical current against planktonic bacteria has previously been demonstrated. The short-term exposure of the bacteria in biofilms to electrical current in the absence of antimicrobials has been shown to have no substantial effect; however, longer-term exposure has not been studied. A previously described in vitro model was used to determine the effect of prolonged exposure (i.e., up to 7 days) to low-intensity (i.e., 20-, 200-, and 2,000-microampere) electrical direct currents on Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis biofilms...
January 2009: Antimicrobial Agents and Chemotherapy
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"