Read by QxMD icon Read

Acetyl-coa synthetase

Jingxue Wang, Sanjay K Singh, Chunfang Du, Chen Li, Jianchun Fan, Sitakanta Pattanaik, Ling Yuan
Rapeseed (Brassica napus) is an important oil seed crop, providing more than 13% of the world's supply of edible oils. An in-depth knowledge of the gene network involved in biosynthesis and accumulation of seed oil is critical for the improvement of B. napus. Using available genomic and transcriptomic resources, we identified 1,750 acyl-lipid metabolism (ALM) genes that are distributed over 19 chromosomes in the B. napus genome. B. rapa and B. oleracea, two diploid progenitors of B. napus, contributed almost equally to the ALM genes...
2016: Frontiers in Plant Science
Lalit Agrawal, Swati Gupta, Shashank K Mishra, Garima Pandey, Susheel Kumar, Puneet S Chauhan, Debasis Chakrabarty, Chandra S Nautiyal
Along with many adaptive strategies, dynamic changes in protein abundance seem to be the common strategy to cope up with abiotic stresses which can be best explored through proteomics. Understanding of drought response is the key to decipher regulatory mechanism of better adaptation. Rice (Oryza sativa L.) proteome represents a phenomenal source of proteins that govern traits of agronomic importance, such as drought tolerance. In this study, a comparison of root cytoplasmic proteome was done for a drought tolerant rice (Heena) cultivar in PEG induced drought conditions...
2016: Frontiers in Plant Science
Zhenle Yang, Hongying Ji, Dantong Liu
Cyperus esculentus is unique in that it can accumulate rich oil in tuber. However, the underlying mechanism of tuber oil biosynthesis is still unclear. Our transcriptional analyses of the pathways from pyruvate production up to triacylglycerol (TAG) accumulation in tuber revealed many distinct species-specific lipid expression patterns from oil seeds and fruits, indicating that in C. esculentus tuber, (1) carbon flux from sucrose toward plastid pyruvate could be produced mostly through cytosolic glycolytic pathway, (2) acetyl-CoA synthetase might be an important contributor to acetyl-CoA formation for plastid fatty acid biosynthesis, (3) expression pattern for stearoyl-ACP desaturase was associated with high oleic acid composition, (4) it was most likely that endoplasmic reticulum-associated acyl-CoA synthetase played a significant role in the export of fatty acids between the plastid and ER, (5) lipid phosphate phosphatase (LPP)-δ was most probably related to the formation of DAG pool in Kennedy pathway, (6) diacylglyceroltransacylase 2 (DGAT2) and phospholipid:diacylglycerolacyltransferase 1 (PDAT1) might play crucial roles in tuber oil biosynthesis...
October 13, 2016: Plant & Cell Physiology
Tomoko Abe, Yoshiteru Hashimoto, Sayaka Sugimoto, Kenta Kobayashi, Takuto Kumano, Michihiko Kobayashi
The adenylation domain of nonribosomal peptide synthetase (NRPS) is responsible for the selective substrate recognition and its activation (as an acyl-O-AMP intermediate) during ATP consumption. DhbE, a stand-alone adenylation domain, acts on an aromatic acid, 2,3-dihydroxybenzoic acid (DHB). This activation is the initial step of the synthesis of bacillibactin that is a high-affinity small-molecule iron chelator also termed siderophore. Subsequently, the activated DHB is transferred and attached covalently to a peptidyl carrier protein domain via a thioester bond...
October 12, 2016: Journal of Antibiotics
Jeong Mo Bae, Jung Ho Kim, Hyeon Jeong Oh, Hye Eun Park, Tae Hun Lee, Nam-Yun Cho, Gyeong Hoon Kang
Acetyl-CoA synthetase-2 is an emerging key enzyme for cancer metabolism, which supplies acetyl-CoA for tumor cells by capturing acetate as a carbon source under stressed conditions. However, implications of acetyl-CoA synthetase-2 in colorectal carcinoma may differ from other malignancies, because normal colonocytes use short-chain fatty acids as an energy source, which are supplied by fermentation of the intestinal flora. Here we analyzed acetyl-CoA synthetase-2 mRNA expression by reverse-transcription quantitative PCR in paired normal mucosa and tumor tissues of 12 colorectal carcinomas, and subsequently evaluated acetyl-CoA synthetase-2 protein expression by immunohistochemistry in 157 premalignant colorectal lesions, including 60 conventional adenomas and 97 serrated polyps, 1,106 surgically resected primary colorectal carcinomas, and 23 metastatic colorectal carcinomas in the liver...
October 7, 2016: Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc
Haiyan Zhang, Wen-Jun Shen, Yihang Li, Alex Bittner, Stefanie Bittner, Juveria Tabassum, Yuan F Cortez, Fredric B Kraemer, Salman Azhar
Nordihydroguaiaretic acid (NDGA), the main metabolite of Creosote Bush, has been shown to have profound effects on the core components of metabolic syndrome, including lowering of blood glucose, free fatty acids and triglyceride levels, attenuating elevated blood pressure in several rodent models of dyslipidemia, and improving body weight, insulin resistance, diabetes and hypertension. In the present study, a high-fructose diet fed rat model of hypertriglyceridemia, dyslipidemia, insulin resistance and hepatic steatosis was employed to investigate the global transcriptional changes in the lipid metabolizing pathways in three insulin sensitive tissues: liver, skeletal muscle and adipose tissue in response to chronic dietary administration of NDGA...
2016: Nutrition & Metabolism
Karen Vignale, Justina V Caldas, Judy A England, Nirun Boonsinchai, Andrew Magnuson, Erik D Pollock, Sami Dridi, Casey M Owens, Craig N Coon
A study was conducted to evaluate the effect of white striping ( WS: ) of broiler breast muscle (Pectoralis major) on protein turnover and gene expression of genes related to protein degradation and fatty acid synthesis. A total of 560 day-old male broiler chicks Cobb 500 were allocated in a total of 16 pens, 35 chicks per pen. A completely randomized design was conducted with a 2 × 3 factorial arrangement (2 scores: severe and normal, and 3 breast meat samples sites). At d 60, 20 birds were randomly selected, euthanized, and scored for white striping...
September 24, 2016: Poultry Science
Kristy Koselny, Julianne Green, Louis DiDone, Justin P Halterman, Annette W Fothergill, Nathan P Wiederhold, Thomas F Patterson, Melanie T Cushion, Chad Rappelye, Melanie Wellington, Damian J Krysan
Only one new class of antifungal drugs has been introduced into clinical practice in the last thirty years and, thus, the identification of small molecules with novel mechanisms of action is an important goal of current anti-infective research. Here, we describe the characterization of the spectrum of in vitro activity and in vivo activity of AR-12, a celecoxib-derivative which has been tested in a Phase I clinical trial as an anti-cancer agent. AR-12 inhibits fungal acetyl CoA synthetase in vitro and is fungicidal at concentrations similar to those achieved in human plasma...
September 19, 2016: Antimicrobial Agents and Chemotherapy
Tuan Ngoc Nguyen, Chen-Wei Yeh, Po-Chun Tsai, Kyoung Lee, Shir-Ly Huang
Pseudomonas nitroreducens TX1 is of special interest because of its ability to utilize 0.05% to 20% octylphenol polyethoxylates (OPEOn) as sole carbon source. In this study, a library containing 30,000 Tn5-insertion mutants of the wild-type strain TX1 was constructed and screened for the OPEOn utilization and 93 mutants were found to be unable to grow on OPEOn In total 42 separate disrupted genes were identified and the proteins encoded by the genes were then classified into various categories, namely information storage and processing (14...
September 2, 2016: Applied and Environmental Microbiology
Zachary T Schug, Johan Vande Voorde, Eyal Gottlieb
Recent high-profile reports have reignited an interest in acetate metabolism in cancer. Acetyl-CoA synthetases that catalyse the conversion of acetate to acetyl-CoA have now been implicated in the growth of hepatocellular carcinoma, glioblastoma, breast cancer and prostate cancer. In this Review, we discuss how acetate functions as a nutritional source for tumours and as a regulator of cancer cell stress, and how preventing its (re)capture by cancer cells may provide an opportunity for therapeutic intervention...
August 26, 2016: Nature Reviews. Cancer
Jordan T Bird, Brett J Baker, Alexander J Probst, Mircea Podar, Karen G Lloyd
The recently proposed candidatus order Altiarchaeales remains an uncultured archaeal lineage composed of genetically diverse, globally widespread organisms frequently observed in anoxic subsurface environments. In spite of 15 years of studies on the psychrophilic biofilm-producing Candidatus Altiarchaeum hamiconexum and its close relatives, very little is known about the phylogenetic and functional diversity of the widespread free-living marine members of this taxon. From methanogenic sediments in the White Oak River Estuary, NC, USA, we sequenced a single cell amplified genome (SAG), WOR_SM1_SCG, and used it to identify and refine two high-quality genomes from metagenomes, WOR_SM1_79 and WOR_SM1_86-2, from the same site...
2016: Frontiers in Microbiology
Kimberly L James, Luis A Ríos-Hernández, Neil Q Wofford, Housna Mouttaki, Jessica R Sieber, Cody S Sheik, Hong H Nguyen, Yanan Yang, Yongming Xie, Jonathan Erde, Lars Rohlin, Elizabeth A Karr, Joseph A Loo, Rachel R Ogorzalek Loo, Gregory B Hurst, Robert P Gunsalus, Luke I Szweda, Michael J McInerney
UNLABELLED: Syntrophus aciditrophicus is a model syntrophic bacterium that degrades key intermediates in anaerobic decomposition, such as benzoate, cyclohexane-1-carboxylate, and certain fatty acids, to acetate when grown with hydrogen-/formate-consuming microorganisms. ATP formation coupled to acetate production is the main source for energy conservation by S. aciditrophicus However, the absence of homologs for phosphate acetyltransferase and acetate kinase in the genome of S. aciditrophicus leaves it unclear as to how ATP is formed, as most fermentative bacteria rely on these two enzymes to synthesize ATP from acetyl coenzyme A (CoA) and phosphate...
2016: MBio
Michael Gatter, Stephanie Ottlik, Zsolt Kövesi, Benjamin Bauer, Falk Matthäus, Gerold Barth
The non-conventional yeast Yarrowia lipolytica is able to utilize a wide range of different substrates like glucose, glycerol, ethanol, acetate, proteins and various hydrophobic molecules. Although most metabolic pathways for the utilization of these substrates have been clarified by now, it was not clear whether ethanol is oxidized by alcohol dehydrogenases or by an alternative oxidation system inside the cell. In order to detect the genes that are required for ethanol utilization in Y. lipolytica, eight alcohol dehydrogenase (ADH) genes and one alcohol oxidase gene (FAO1) have been identified and respective deletion strains were tested for their ability to metabolize ethanol...
October 2016: Fungal Genetics and Biology: FG & B
Shan Cao, Hui Li, Xiaoyun Yao, Lihong Li, Luyao Jiang, Qiang Zhang, Jiaxue Zhang, Di Liu, Hai Lu
The acetyl-CoA synthetase (ACS) family is a subfamily of adenylate-forming enzymes, which has a close evolutionary relationship with the 4-coumarate:CoA ligase (4CL) family. In this study, two ACS genes were cloned from Populus trichocarpa and were named PtrACS1 and PtrACS2. Bioinformatics characterization of PtrACS1 and PtrACS2 showed that they contained the key ACS residues and a putative peroxisome targeting sequence 1 (PTS1) at the end of the C-terminal sequence. Real-time PCR results showed that PtrACS1 and PtrACS2 were expressed in the phloem, xylem, leaves, and roots of one-year-old P...
2016: SpringerPlus
Xue Gao, Shu-Hai Lin, Feng Ren, Jin-Tao Li, Jia-Jia Chen, Chuan-Bo Yao, Hong-Bin Yang, Shu-Xia Jiang, Guo-Quan Yan, Di Wang, Yi Wang, Ying Liu, Zongwei Cai, Ying-Ying Xu, Jing Chen, Wenqiang Yu, Peng-Yuan Yang, Qun-Ying Lei
Besides the conventional carbon sources, acetyl-CoA has recently been shown to be generated from acetate in various types of cancers, where it promotes lipid synthesis and tumour growth. The underlying mechanism, however, remains largely unknown. We find that acetate induces a hyperacetylated state of histone H3 in hypoxic cells. Acetate predominately activates lipogenic genes ACACA and FASN expression by increasing H3K9, H3K27 and H3K56 acetylation levels at their promoter regions, thus enhancing de novo lipid synthesis, which combines with its function as the metabolic precursor for fatty acid synthesis...
2016: Nature Communications
Kenji Tajima, Xuerong Han, Yoshiki Hashimoto, Yasuharu Satoh, Toshifumi Satoh, Seiichi Taguchi
Thermostable enzymes are required for the rapid and sustainable production of polyhydroxyalkanoate (PHA) in vitro. The in vitro synthesis of PHA using the engineered thermostable synthase PhaC1SG(STQK) has been reported; however, the non-thermostable enzymes acetyl-CoA synthetase (ACS) and CoA transferase (CT) from mesophilic strains were used as monomer-supplying enzymes in this system. In the present study, acs and ct were cloned from the thermophilic bacteria Pelotomaculum thermopropionicum JCM10971 and Thermus thermophilus JCM10941 to construct an in vitro PHA synthesis system using only thermostable enzymes...
June 22, 2016: Journal of Bioscience and Bioengineering
Yasushi Kamisaka, Kazuyoshi Kimura, Hiroshi Uemura, Rodrigo Ledesma-Amaro
We previously created an oleaginous Saccharomyces cerevisiae transformant as a dga1 mutant overexpressing Dga1p lacking 29 amino acids at the N-terminal (Dga1∆Np). Because we have already shown that dga1 disruption decreases the expression of ESA1, which encodes histone acetyltransferase, the present study was aimed at exploring how Esa1p was involved in lipid accumulation. We based our work on the previous observation that Esa1p acetylates and activates phosphoenolpyruvate carboxykinase (PEPCK) encoded by PCK1, a rate-limiting enzyme in gluconeogenesis, and subsequently evaluated the activation of Pck1p by yeast growth with non-fermentable carbon sources, thus dependent on gluconeogenesis...
September 2016: Applied Microbiology and Biotechnology
Anila K Madiraju, Tiago Alves, Xiaojian Zhao, Gary W Cline, Dongyan Zhang, Sanjay Bhanot, Varman T Samuel, Richard G Kibbey, Gerald I Shulman
A key sensor of cellular energy status, AMP-activated protein kinase (AMPK), interacts allosterically with AMP to maintain an active state. When active, AMPK triggers a metabolic switch, decreasing the activity of anabolic pathways and enhancing catabolic processes such as lipid oxidation to restore the energy balance. Unlike oxidative tissues, in which AMP is generated from adenylate kinase during states of high energy demand, the ornithine cycle enzyme argininosuccinate synthetase (ASS) is a principle site of AMP generation in the liver...
June 14, 2016: Proceedings of the National Academy of Sciences of the United States of America
Guo-Chang Zhang, In Iok Kong, Na Wei, Dairong Peng, Timothy L Turner, Bong Hyun Sung, Jung-Hoon Sohn, Yong-Su Jin
Xylose fermentation by engineered Saccharomyces cerevisiae expressing NADPH-linked xylose reductase (XR) and NAD(+) -linked xylitol dehydrogenase (XDH) suffers from redox imbalance due to cofactor difference between XR and XDH, especially under anaerobic conditions. We have demonstrated that coupling of an NADH-dependent acetate reduction pathway with surplus NADH producing xylose metabolism enabled not only efficient xylose fermentation, but also in situ detoxification of acetate in cellulosic hydrolysates through simultaneous co-utilization of xylose and acetate...
May 31, 2016: Biotechnology and Bioengineering
Kateřina Svobodová, Denisa Petráčková, Barbora Kozická, Petr Halada, Čeněk Novotný
White rot fungi are well known for their ability to degrade xenobiotics in pure cultures but few studies focus on their performance under bacterial stress in real wastewaters. This study investigated mutual interactions in co-cultures of Pleurotus ostreatus and activated sludge microbes in batch reactors and different culture media. Under the bacterial stress an increase in the dye decolorization efficiency (95 vs. 77.1 %) and a 2-fold elevated laccase activity (156.7 vs. 78.4 Ul(-1)) were observed in fungal-bacterial cultures compared to pure P...
June 2016: World Journal of Microbiology & Biotechnology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"