Read by QxMD icon Read


Dong Rak Kwon, Hyunjung Kwon, Woo Ram Lee, Joonsoo Park
BACKGROUND: Fungi are eukaryotic microorganisms including yeast and molds. Many studies have focused on modifying bacterial growth, but few on fungal growth. Microcurrent electricity may stimulate fungal growth. OBJECTIVE: This study aims to investigate effects of microcurrent electric stimulation on Trichophyton rubrum growth. METHODS: Standard-sized inoculums of T. rubrum derived from a spore suspension were applied to potato dextrose cornmeal agar (PDACC) plates, gently withdrawn with a sterile pipette, and were applied to twelve PDACC plates with a sterile spreader...
October 2016: Annals of Dermatology
Mayank V Jog, Robert X Smith, Kay Jann, Walter Dunn, Belen Lafon, Dennis Truong, Allan Wu, Lucas Parra, Marom Bikson, Danny J J Wang
Transcranial direct current stimulation (tDCS) is an emerging non-invasive neuromodulation technique that applies mA currents at the scalp to modulate cortical excitability. Here, we present a novel magnetic resonance imaging (MRI) technique, which detects magnetic fields induced by tDCS currents. This technique is based on Ampere's law and exploits the linear relationship between direct current and induced magnetic fields. Following validation on a phantom with a known path of electric current and induced magnetic field, the proposed MRI technique was applied to a human limb (to demonstrate in-vivo feasibility using simple biological tissue) and human heads (to demonstrate feasibility in standard tDCS applications)...
October 4, 2016: Scientific Reports
E O Haberal, A SalmanOgli, B Nasseri
In this article, a patch-clamp low noise current amplification based on nanoparticles plasmonic radiation is analyzed. It is well-known, a very small current is flowing from different membrane channels and so, for extra processing the current amplification is necessary. It is notable that there are some problems in traditional electronic amplifier due to its noise and bandwidth problem. Because of the important role of the patch-clamp current in cancer research and especially its small amplitude, it is vital to intensify it without adding any noises...
October 2016: IET Nanobiotechnology
Jacob Rubinstein, Gershon Wolansky
The problem of phase retrieval from intensity measurements is examined for the case of dissipative wave equations. Unlike the conservative case, it is not clear if and when the problem is solvable at all. We provide two solutions. First, it is shown that, for a certain class of dissipating potentials, the problem can be fully solved by converting it through a simple transformation to the framework of the weighted least action principle. Second, for all other dissipating potentials, a deep result from the theory of elliptic partial differential equations is used to show that the problem is always solvable up to a scaling of one of the measured intensities...
August 1, 2016: Journal of the Optical Society of America. A, Optics, Image Science, and Vision
Dustin T Offermann, Dale R Welch, Dave V Rose, Carsten Thoma, Robert E Clark, Chris B Mostrom, Andrea E W Schmidt, Anthony J Link
Fusion yields from dense, Z-pinch plasmas are known to scale with the drive current, which is favorable for many potential applications. Decades of experimental studies, however, show an unexplained drop in yield for currents above a few mega-ampere (MA). In this work, simulations of DD Z-Pinch plasmas have been performed in 1D and 2D for a constant pinch time and initial radius using the code Lsp, and observations of a shift in scaling are presented. The results show that yields below 3 MA are enhanced relative to pure thermonuclear scaling by beamlike particles accelerated in the Rayleigh-Taylor induced electric fields, while yields above 3 MA are reduced because of energy lost by the instability and the inability of the beamlike ions to enter the pinch region...
May 13, 2016: Physical Review Letters
Zhen Zhang, Lixin Yan, Yingchao Du, Zheng Zhou, Xiaolu Su, Lianmin Zheng, Dong Wang, Qili Tian, Wei Wang, Jiaru Shi, Huaibi Chen, Wenhui Huang, Wei Gai, Chuanxiang Tang
High-intensity trains of electron bunches with tunable picosecond spacing are produced and measured experimentally with the goal of generating terahertz (THz) radiation. By imposing an initial density modulation on a relativistic electron beam and controlling the charge density over the beam propagation, density spikes of several-hundred-ampere peak current in the temporal profile, which are several times higher than the initial amplitudes, have been observed for the first time. We also demonstrate that the periodic spacing of the bunch train can be varied continuously either by tuning launching phase of a radio-frequency gun or by tuning the compression of a downstream magnetic chicane...
May 6, 2016: Physical Review Letters
P Veltri, V Antoni, P Agostinetti, M Brombin, K Ikeda, M Kisaki, H Nakano, E Sartori, G Serianni, Y Takeiri, K Tsumori
At National Institute for Fusion Science (NIFS), a multi-ampere negative ion source is used to support the R&D on H(-) production, extraction, and acceleration. In this contribution, we study the characteristics of the acceleration system of this source, in order to characterize the beam optics at different operational conditions. A dedicated experimental campaign was carried out at NIFS, using as main diagnostic the infra-red imaging of the beam profiles. The experimental measurements are also compared with 3D numerical simulations, in order to validate the codes and to assess their degree of reliability...
February 2016: Review of Scientific Instruments
E M Oks, M V Shandrikov, A V Vizir
An ion source based on a hollow-cathode Penning discharge was switched to a high-current pulsed mode (tens of amperes and tens of microseconds) to produce an intense hydrogen ion beam. With molecular hydrogen (H2), the ion beam contained three species: H(+), H2(+), and H3(+). For all experimental conditions, the fraction of H2 (+) ions in the beam was about 10 ÷ 15% of the total ion beam current and varied little with ion source parameters. At the same time, the ratio of H(+) and H3(+) depended strongly on the discharge current, particularly on its distribution in the gap between the hollow and planar cathodes...
February 2016: Review of Scientific Instruments
N Pilan, V Antoni, A De Lorenzi, G Chitarin, P Veltri, E Sartori
A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor...
February 2016: Review of Scientific Instruments
G Yu Yushkov, A G Nikolaev, E M Oks, V P Frolova
High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam...
February 2016: Review of Scientific Instruments
Robert Kavet, Megan T Wyman, A Peter Klimley
The Trans Bay Cable (TBC) is a ±200-kilovolt (kV), 400 MW 85-km long High Voltage Direct Current (DC) buried transmission line linking Pittsburg, CA with San Francisco, CA (SF) beneath the San Francisco Estuary. The TBC runs parallel to the migratory route of various marine species, including green sturgeon, Chinook salmon, and steelhead trout. In July and August 2014, an extensive series of magnetic field measurements were taken using a pair of submerged Geometrics magnetometers towed behind a survey vessel in four locations in the San Francisco estuary along profiles that cross the cable's path; these included the San Francisco-Oakland Bay Bridge (BB), the Richmond-San Rafael Bridge (RSR), the Benicia-Martinez Bridge (Ben) and an area in San Pablo Bay (SP) in which a bridge is not present...
2016: PloS One
J Fischer
At its 25th meeting, the General Conference on Weights and Measures (CGPM) approved Resolution 1 'On the future revision of the International System of Units, the SI', which sets the path towards redefinition of four base units at the next CGPM in 2018. This constitutes a decisive advance towards the formal adoption of the new SI and its implementation. Kilogram, ampere, kelvin and mole will be defined in terms of fixed numerical values of the Planck constant, elementary charge, Boltzmann constant and Avogadro constant, respectively...
March 28, 2016: Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences
Christopher R Ellis, Deanna I Dickerman, Jodi M Orton, Sohail Hassan, Eric D Good, Toshimasa Okabe, John A Andriulli, Kara J Quan, Arnold J Greenspon
BACKGROUND: Cardiac resynchronization defibrillator (CRT-D) devices improve survival for New York Heart Association classes II-IV systolic heart failure patients with QRS > 120 ms and left ventricular ejection fraction < 35%. A limitation of 100% CRT pacing is excess battery depletion and pulse generator (PG) replacement compared to VVI or dual-chamber systems. Ampere hour (Ah) measures PG battery capacity and may predict CRT-D device longevity. METHODS: We performed a multicenter retrospective study of all CRT-D devices implanted at our centers from August 1, 2008 to December 31, 2010...
July 2016: Pacing and Clinical Electrophysiology: PACE
Kolja Brix, Yasemin Hafizogullari, Andreas Platen
Production errors in the published version of J. Opt. Soc. Am. A32, 2227 (2015)JOAOD60740-323210.1364/JOSAA.32.002227 are reported in this note. The errors involve the rendering and content of the mathematics and some of the references and their citations.
January 1, 2016: Journal of the Optical Society of America. A, Optics, Image Science, and Vision
Abbas Najjar-Khodabakhsh, Jafar Soltani
In this paper, an adaptive nonlinear control scheme has been proposed for implementing maximum torque per ampere (MTPA) control strategy corresponding to interior permanent magnet synchronous motor (IPMSM) drive. This control scheme is developed in the rotor d-q axis reference frame using adaptive input-output state feedback linearization (AIOFL) method. The drive system control stability is supported by Lyapunov theory. The motor inductances are online estimated by an estimation law obtained by AIOFL. The estimation errors of these parameters are proved to be asymptotically converged to zero...
March 2016: ISA Transactions
Himchan Cho, Su-Hun Jeong, Min-Ho Park, Young-Hoon Kim, Christoph Wolf, Chang-Lyoul Lee, Jin Hyuck Heo, Aditya Sadhanala, NoSoung Myoung, Seunghyup Yoo, Sang Hyuk Im, Richard H Friend, Tae-Woo Lee
Organic-inorganic hybrid perovskites are emerging low-cost emitters with very high color purity, but their low luminescent efficiency is a critical drawback. We boosted the current efficiency (CE) of perovskite light-emitting diodes with a simple bilayer structure to 42.9 candela per ampere, similar to the CE of phosphorescent organic light-emitting diodes, with two modifications: We prevented the formation of metallic lead (Pb) atoms that cause strong exciton quenching through a small increase in methylammonium bromide (MABr) molar proportion, and we spatially confined the exciton in uniform MAPbBr3 nanograins (average diameter = 99...
December 4, 2015: Science
Nikolay I Zheludev, Eric Plum
The changing balance of forces at the nanoscale offers the opportunity to develop a new generation of spatially reconfigurable nanomembrane metamaterials in which electromagnetic Coulomb, Lorentz and Ampère forces, as well as thermal stimulation and optical signals, can be engaged to dynamically change their optical properties. Individual building blocks of such metamaterials, the metamolecules, and their arrays fabricated on elastic dielectric membranes can be reconfigured to achieve optical modulation at high frequencies, potentially reaching the gigahertz range...
January 2016: Nature Nanotechnology
Kolja Brix, Yasemin Hafizogullari, Andreas Platen
We consider the inverse refractor and the inverse reflector problem. The task is to design a free-form lens or a free-form mirror that, when illuminated by a point light source, produces a given illumination pattern on a target. Both problems can be modeled by strongly nonlinear second-order partial differential equations of Monge-Ampère type. In [Math. Models Methods Appl. Sci.25, 803 (2015)MMMSEU0218-202510.1142/S0218202515500190], the authors have proposed a B-spline collocation method, which has been applied to the inverse reflector problem...
November 1, 2015: Journal of the Optical Society of America. A, Optics, Image Science, and Vision
Zexin Feng, Brittany D Froese, Rongguang Liang
We present a composite freeform surface construction method for creating a high-accuracy irradiance distribution from a given incident beam under the influence of diffraction. The main idea is that we first determine a fully continuous freeform surface estimate by solving a standard Monge-Ampère equation and then refine it using an iterative Fourier-transform algorithm associated with over-compensation. Although this method can only be implemented in the paraxial approximation, it can significantly simplify the design and is applicable to many examples that fulfill this restriction...
November 1, 2015: Applied Optics
Jakub Machejek, Joanna Machejek, Maria Lelakowska-Pieła, Anna Engel, Donat Domaracki, Jacek Lelakowski
UNLABELLED: Pacemaker working time, which was in the beginning not more than one year, reached the maximum in the first half of the 70s, then shortened to between a few to several years. Aim of the study was investigated the electrical properties of the endocavitary pacemaker leads, considered the possibility of manufacturing a longlasting pacemaker ("lifetime pacemaker") and examined the preference of patients in relation to dimensions of the implanted device. MATERIALS AND METHODS: The investigation included 190 electrodes with cathodes coated with titanium nitride (TIJ and TIR), 244--coated with iridium (SXA and SXV) and 90--coated with black platinum (DXA and DXV)...
August 2015: Polski Merkuriusz Lekarski: Organ Polskiego Towarzystwa Lekarskiego
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"