Read by QxMD icon Read

Gold nanoparticles, review

Zhicong Miao, Zilin Gao, Ruoxia Chen, Xiaoqing Yu, Zhiqiang Su, Gang Wei
The conjugation of gold nanoparticles (AuNPs) with biomolecules could create many outstanding biofunctions for the surface-functionalized nanoparticles and extend their biomedical applications. In this review, we summarize the recent advances in the surface bioengineering of AuNPs with biomolecules, such as DNA, proteins, peptides, and biopolymers, in which the details on the structure, functions, and properties of surface-bioengineered AuNPs are discussed. In addition, the surface-biofunctionalization of AuNPs for biomedical applications like biosensing, bioimaging, drug delivery, and tissue engineering are introduced...
January 16, 2018: Current Medicinal Chemistry
Elisabete Oliveira, Emilia Bértolo, Cristina Núñez, Viviane Pilla, Hugo M Santos, Javier Fernández-Lodeiro, Adrian Fernández-Lodeiro, Jamila Djafari, José Luis Capelo, Carlos Lodeiro
Invited for this month's cover picture is the BIOSCOPE group of Professors Carlos Lodeiro and José Luis Capelo at the REQUIMTE/UCIBIO-LAQv-FCT University NOVA of Lisbon (Portugal), and their collaborators. The cover picture is devoted to Translational Research, and shows the Portuguese Flag represented by the interaction between cells and Janus gold/silver nanoparticles functionalized with rhodamine (red) and Fluorescein (green) dyes as tools for biomedical translational research. Read the full text of their Review at 10...
January 2018: ChemistryOpen
Fahimeh Charbgoo, Mojgan Nejabat, Khalil Abnous, Fatemeh Soltani, Seyed Mohammad Taghdisi, Mona Alibolandi, W Thomas Shier, Terry W J Steele, Mohammad Ramezani
Gold nanoparticles (AuNPs) have attracted great attention in biomedical fields due to their unique properties. However, there are few reports on clinical trial of these nanoparticles. In vivo, AuNPs face complex biological fluids containing abundant proteins, which challenge the prediction of their fate that is known as "bio-identity". These proteins attach onto the AuNPs surface forming protein corona that makes the first step of nano-bio interface and dictates the subsequent AuNPs fate. Protein corona formation even stealth active targeting effect of AuNPs...
January 4, 2018: Journal of Controlled Release: Official Journal of the Controlled Release Society
Sonali, Matte Kasi Viswanadh, Rahul Pratap Singh, Poornima Agrawal, Abhishesh Kumar Mehata, Datta Maroti Pawde, Narendra, Roshan Sonkar, Madaswamy Sona Muthu
Nanotheranostics have demonstrated the development of advanced platforms that can diagnose brain cancer at early stages, initiate first-line therapy, monitor it, and if needed, rapidly start subsequent treatments. In brain nanotheranostics, therapeutic as well as diagnostic entities are loaded in a single nanoplatform, which can be further developed as a clinical formulation for targeting various modes of brain cancer. In the present review, we concerned about theranostic nanosystems established till now in the research field...
2018: Nanotheranostics
Qinqin Huang, Yin Wang, Xingxiang Chen, Yimeng Wang, Zhiqiang Li, Shiming Du, Lianrong Wang, Shi Chen
Circulating tumor cells (CTCs) are cancer cells that shed from a primary tumor and circulate in the bloodstream. As a form of "tumor liquid biopsy", CTCs provide important information for the mechanistic investigation of cancer metastasis and the measurement of tumor genotype evolution during treatment and disease progression. However, the extremely low abundance of CTCs in the peripheral blood and the heterogeneity of CTCs make their isolation and characterization major technological challenges. Recently, nanotechnologies have been developed for sensitive CTC detection; such technologies will enable better cell and molecular characterization and open up a wide range of clinical applications, including early disease detection and evaluation of treatment response and disease progression...
2018: Nanotheranostics
Samer Bayda, Mohamad Hadla, Stefano Palazzolo, Giuseppe Corona, Giuseppe Toffoli, Flavio Rizzolio
Inorganic nanoparticles (NPs) including those derived from metals (e.g., gold, silver), semiconductors (e.g., quantum dots), carbon dots, carbon nanotubes, or oxides (e.g., iron oxide), have been deeply investigated recently for diagnostic and therapeutic purposes in oncology. Compared to organic nanomaterials, inorganic NPs have advanced advantages and unique characteristics for better imaging and drug delivery. Still, only a limited number of inorganic NPs are translated into clinical practice. In this review, we discuss the progression of inorganic NPs for cancer therapy and imaging, focusing our attention on opportunities, limitations and challenges for the main constituting nanomaterials, including metallic and magnetic NPs...
December 29, 2017: Current Medicinal Chemistry
Ilaria Fratoddi
This review provides a broad look on the recent investigations on the synthesis, characterization and physico-chemical properties of noble metal nanoparticles, mainly gold and silver nanoparticles, stabilized with ligands of different chemical nature. A comprehensive review of the available literature in this field may be far too large and only some selected representative examples will be reported here, together with some recent achievements from our group, that will be discussed in more detail. Many efforts in finding synthetic routes have been performed so far to achieve metal nanoparticles with well-defined size, morphology and stability in different environments, to match the large variety of applications that can be foreseen for these materials...
December 27, 2017: Nanomaterials
Wenjing Zhang, Xian-En Zhang, Feng Li
Biomolecular nanostructures derived from living organisms, such as protein cages, fibers and layers are drawing increasing interests as natural biomaterials. The virus-based nanoparticles (VNPs) of simian virus 40 (SV40), with a cage-like structure assembled from the major capsid protein of SV40, have been developed as a platform for nanobiotechnology in the recent decade. Foreign nanomaterials (e.g. quantum dots (QDs) and gold nanoparticles (AuNPs)) can be positioned in the inner cavity or on the outer surface of SV40 VNPs, through self-assembly by engineering the nanoparticle (NP)-protein interfacial interactions...
December 26, 2017: Biotechnology Journal
Elif Ertem, Marta Diez-Castellnou, Quy Khac Ong, Francesco Stellacci
Monolayer protected gold nanoparticles (AuNPs) have a huge potential for the development of innovative sensing systems for the detection of metal ions and small molecules. The organic ligand shell, primarily utilized to stabilize the gold core, can be rationally designed to promote selective interactions with a desired analyte. In addition, the outstanding physical and optical properties of AuNPs can be exploited to obtain analytically useful signals upon analyte binding. In this account, we review recent advances in AuNP-based sensing systems emphasizing on the rational design of the ligand shell for detection of heavy metal ions and small molecules...
December 18, 2017: Chemical Record: An Official Publication of the Chemical Society of Japan ... [et Al.]
Malte S Strozyk, Dorleta Jimenez de Aberasturi, Luis M Liz-Marzán
Polymers and nanoparticles can be combined into different materials with applications in various fields like catalysis, biotechnology, or drug delivery, to cite just a few. Colloidal composites may vary significantly, ranging from a single nanoparticle stabilized by a polymer shell through a polymeric carrier decorated with hundreds of particles. We review here composite colloids comprising gold nanoparticles, with an emphasis in systems with potential application in surface enhanced Raman scattering (SERS)...
December 14, 2017: Chemical Record: An Official Publication of the Chemical Society of Japan ... [et Al.]
H Aldewachi, T Chalati, M N Woodroofe, N Bricklebank, B Sharrack, P Gardiner
Gold nanoparticles (AuNPs) provide excellent platforms for the development of colorimetric biosensors as they can be easily functionalised, displaying different colours depending on their size, shape and state of aggregation. In the last decade, a variety of biosensors have been developed to exploit the extent of colour changes as nano-particles (NPs) either aggregate or disperse, in the presence of analytes. Of critical importance to the design of these methods is that the behaviour of the systems has to be reproducible and predictable...
December 6, 2017: Nanoscale
Usman Ali Ashfaq, Muhammad Riaz, Erum Yasmeen, Muhammad Zubair Yousaf
Cancer is one of the major causes of death worldwide. The silent activation of cellular factors responsible for deviation from normal regulatory pathways leads to the development of cancer. Nano-biotechnology is a novel drug-delivery system with high potential of efficacy and accuracy to target lethal cancers. Various biocompatible nanoparticle (NP)-based drug-delivery systems such as liposomes, dendrimers, micelles, silica, quantum dots, and magnetic, gold, and carbon nanotubes have already been reported for successful targeted cancer treatment...
2017: Critical Reviews in Therapeutic Drug Carrier Systems
Tanveer A Tabish, Shaowei Zhang, Paul G Winyard
Graphene has a promising future in applications such as disease diagnosis, cancer therapy, drug/gene delivery, bio-imaging and antibacterial approaches owing to graphene's unique physical, chemical and mechanical properties alongside minimal toxicity to normal cells, and photo-stability. However, these unique features and bioavailability of graphene are fraught with uncertainties and concerns for environmental and occupational exposure. Changes in the physicochemical properties of graphene affect biological responses including reactive oxygen species (ROS) production...
November 22, 2017: Redox Biology
Lu An, Yuanyuan Wang, Qiwei Tian, Shiping Yang
Over the past few decades, the synthetic development of ultra-small nanoparticles has become an important strategy in nano-medicine, where smaller-sized nanoparticles are known to be more easily excreted from the body, greatly reducing the risk caused by introducing nano-theranostic agents. Gold nanorods are one of the most important nano-theranostic agents because of their special optical and electronic properties. However, the large size (diameter > 6 nm) of most obtained gold nanorods limits their clinical application...
November 30, 2017: Materials
Haque Sheikh Tanzina, Ezharul Chowdhury
Delivery of conventional small molecule drugs and currently evolving nucleic acid-based therapeutics, such as small interfering RNAs (siRNAs) and genes, and contrast agents for high resolution imaging, to the target site of action is highly demanding to increase the therapeutic and imaging efficacy while minimizing the off-target effects of the delivered molecules, as well as develop novel therapeutic and imaging approaches. Organic-inorganic hybrid nanoparticles offer a number of advantages by combining the unique properties of the organic and inorganic counterparts, thus improving the pharmacokinetic behavior and targetability of drugs and contrast agents, and conferring the exclusive optical and magnetic properties for both therapeutic and imaging purposes...
November 19, 2017: Current Drug Delivery
Jake Mazur, Kislay Roy, Jagat R Kanwar
Brain cancer is a highly lethal disease, especially devastating toward both the elderly and children. This cancer has no therapeutics available to combat it, predominately due to the blood-brain barrier (BBB) preventing treatments from maintaining therapeutic levels within the brain. Recently, nanoparticle technology has entered the forefront of cancer therapy due to its ability to deliver therapeutic effects while potentially passing physiological barriers. Key nanoparticles for brain cancer treatment include glutathione targeted PEGylated liposomes, gold nanoparticles, superparamagnetic iron oxide nanoparticles and nanoparticle-albumin bound drugs, with these being discussed throughout this review...
November 21, 2017: Nanomedicine
Pamela A Mosier-Boss
Surface enhanced Raman spectroscopy (SERS) has been widely used for chemical detection. Moreover, the inherent richness of the spectral data has made SERS attractive for use in detecting biological materials, including bacteria. This review discusses methods that have been used to obtain SERS spectra of bacteria. The kinds of SERS substrates employed to obtain SERS spectra are discussed as well as how bacteria interact with silver and gold nanoparticles. The roll of capping agents on Ag/Au NPs in obtaining SERS spectra is examined as well as the interpretation of the spectral data...
November 13, 2017: Biosensors
Yongming Guo, Jing Li, Shuming Chai, Jingjing Yao
Overexposure to fluoride ions (F(-)) causes serious diseases in human beings. Extensive efforts have been made to develop sensitive and selective approaches for F(-) detection and a variety of F(-) sensors have been constructed recently. The burgeoning nanotechnology has provided novel materials for F(-) analysis due to the extraordinary properties of nanomaterials. In this review, we present the recent advances in different nanomaterials-based approaches for the optical F(-) detection via colorimetric, fluorescent and chemiluminescent responses...
November 23, 2017: Nanoscale
Zdenka Kuncic, Sandrine Lacombe
Enhancement of radiation effects by high-atomic number nanoparticles (NPs) has been increasingly studied for its potential to improve radiotherapeutic efficacy. The underlying principle of NP radio-enhancement is the potential to release copious electrons into a nanoscale volume, thereby amplifying radiation-induced biological damage. While the vast majority of studies to date have focused on gold nanoparticles with photon radiation, an increasing number of experimental, theoretical and simulation studies have explored opportunities offered by other NPs (e...
November 10, 2017: Physics in Medicine and Biology
Dominika Damborska, Tomas Bertok, Erika Dosekova, Alena Holazova, Lenka Lorencova, Peter Kasak, Jan Tkac
Screening serum for the presence of prostate specific antigen (PSA) belongs to the most common approach for the detection of prostate cancer. This review (with 156 refs.) addresses recent developments in PSA detection based on the use of various kinds of nanomaterials. It starts with an introduction into the field, the significance of testing for PSA, and on current limitations. A first main section treats electrochemical biosensors for PSA, with subsections on methods based on the use of gold electrodes, graphene or graphene-oxide, carbon nanotubes, hybrid nanoparticles, and other types of nanoparticles...
July 14, 2017: Mikrochimica Acta
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"