Read by QxMD icon Read


H Jęśko, R P Strosznajder
Sirtuins (SIRT1 to -7) are unique histone deacetylases (HDACs) whose activity depends on NAD+, thus making them capable of sensing the cellular metabolic status. Sirtuins orchestrate the stress response and damage repair, and are able to modulate the course of ageing and neurodegenerative diseases. Despite their classification as HDACs, sirtuins deacetylate a vast number of targets in many cellular compartments, and some display additional enzymatic activities including mono(ADP-ribosyl)ation. SIRTs interact with multiple signalling proteins, transcription factors and enzymes including p53, FOXOs (forkhead box subgroup O), PPARs (peroxisome proliferator-activated receptors), NF-B, and DNA-PK (DNA-dependent protein kinase)...
2016: Folia Neuropathologica
Ilenia Pellarin, Laura Arnoldo, Silvia Costantini, Silvia Pegoraro, Gloria Ros, Carlotta Penzo, Gianluca Triolo, Francesca Demarchi, Riccardo Sgarra, Alessandro Vindigni, Guidalberto Manfioletti
The HMGA1 architectural transcription factor is an oncogene overexpressed in the vast majority of human cancers. HMGA1 is a highly connected node in the nuclear molecular network and the key aspect of HMGA1 involvement in cancer development is that HMGA1 simultaneously confers cells multiple oncogenic hits, ranging from global chromatin structural and gene expression modifications up to the direct functional alterations of key cellular proteins. Interestingly, HMGA1 also modulates DNA damage repair pathways...
2016: PloS One
Aiste McCormick, Peter Donoghue, Michelle Dixon, Richard O'Sullivan, Rachel Louise O'Donnell, James Murray, Angelika Kaufmann, Nicola J Curtin, Richard J Edmondson
PURPOSE: DNA damage defects are common in ovarian cancer and can be used to stratify treatment. Although most work has focussed on Homologous Recombination (HR), DNA double strand breaks are repaired primarily by non-homologous end joining (NHEJ). Defects in NHEJ have been shown to contribute to genomic instability and have been associated with the development of chemoresistance. EXPERIMENTAL DESIGN: NHEJ was assessed in a panel of ovarian cancer cell lines and 47 primary ascitic derived ovarian cancer cultures, by measuring the ability of cell extracts to end-join linearized plasmid monomers into multimers...
October 4, 2016: Clinical Cancer Research: An Official Journal of the American Association for Cancer Research
Andrew J Massey
The Chk1 and ATR kinases are critical mediators of the DNA damage response pathway and help protect cancer cells from endogenous and oncogene induced replication stress. Inhibitors of both kinases are currently being evaluated in clinical trials. Chk1 inhibition with V158411 increases DNA damage and activates the ATR, ATM and DNA-PKcs dependent DNA damage response pathways. Inhibiting ATR, ATM and/or DNA-PKcs has the potential to increase the therapeutic activity of Chk1 inhibitors. ATR inhibition but not ATM or DNA-PKcs inhibition potentiated the cytotoxicity of V158411 in p53 mutant and wild type human cancer cell lines...
September 28, 2016: Cancer Letters
Omar Nasser Rahal, Maamoun Fatfat, Carla Hankache, Bassam Osman, Hala Khalife, Khaled Machaca, Hala-Gali Muhtasib
Recently, we showed that the metal chelator TPEN targets colon cancer cells through redox cycling of copper. Here, we studied the DNA damage potential of TPEN and deciphered the role of Chk1, ATM and DNA-PK in TPEN-induced toxicity in three human colon cancer cell lines, HCT116, SW480 and HT29. We also investigated the role of reactive oxygen species (ROS) in TPEN-induced DNA damage. TPEN reduced cell viability in a dose- and time-dependent manner. Cytotoxicity was associated with significant DNA damage and higher expression of ɣ-H2AX protein and activation of ATM/ATR signaling pathway...
October 3, 2016: Cancer Biology & Therapy
S Gao, Y Surovtseva, R S Bindra
No abstract text is available yet for this article.
October 1, 2016: International Journal of Radiation Oncology, Biology, Physics
E S Knyazhanskaya, O A Shadrina, A N Anisenko, M B Gottikh
Human immunodeficiency virus type 1 (HIV-1) is among the best-studied viruses, but some aspects of HIV-1 biology remain obscure. The role of cell proteins in virus replication raises especially many questions. One of the proteins is DNA-dependent protein kinase (DNA-PK), which performs crucially important functions in the human body. DNA-PK is known to influence at least two stages in the HIV-1 life cycle, the integration of viral genome in cell DNA and transcription of the integrated provirus. Many details regarding this influence remain unresolved...
July 2016: Molekuliarnaia Biologiia
J Vávrová, L Zárybnická, P Jošt, A Tichý, M Řezáčová, Z Šinkorová, J Pejchal
Here, we compared the effects of inhibitors of three phosphatidylinositol-3-kinase-related kinases, ATM, ATR a DNA-PK, on radiosensitization of cervical carcinoma cells. We demonstrated that DNA-PK inhibitor NU7441 enhanced phosphorylation of Chk1 and Chk2 kinases 2 h after irradiation of HeLa cells at a dose of 8 Gy in contrast to ATM kinase inhibitor KU55933, which completely blocked the Chk2 kinase phosphorylation on threonine 68, and ATR kinase inhibitor VE-821, which blocked the Chk1 kinase phosphorylation on serine 345...
2016: Folia Biologica (Praha)
Shih-Hung Yang, Ting-Chun Kuo, Hsu Wu, Jhe-Cyuan Guo, Chiun Hsu, Chih-Hung Hsu, Yu-Wen Tien, Kun-Huei Yeh, Ann-Lii Cheng, Sung-Hsin Kuo
Pancreatic cancer is highly lethal. Current research that combines radiation with targeted therapy may dramatically improve prognosis. Cancerous cells are characterized by unstable genomes and activation of DNA repair pathways, which are indicated by increased phosphorylation of numerous factors, including H2AX, ATM, ATR, Chk1, Chk2, DNA-PKcs, Rad51, and Ku70/Ku80 heterodimers. Radiotherapy causes DNA damage. Cancer cells can be made more sensitive to the effects of radiation (radiosensitization) through inhibition of DNA repair pathways...
August 28, 2016: World Journal of Gastroenterology: WJG
Maximilian Mimmler, Simon Peter, Alexander Kraus, Svenja Stroh, Teodora Nikolova, Nina Seiwert, Solveig Hasselwander, Carina Neitzel, Jessica Haub, Bernhard H Monien, Petra Nicken, Pablo Steinberg, Jerry W Shay, Bernd Kaina, Jörg Fahrer
PhIP is an abundant heterocyclic aromatic amine (HCA) and important dietary carcinogen. Following metabolic activation, PhIP causes bulky DNA lesions at the C8-position of guanine. Although C8-PhIP-dG adducts are mutagenic, their interference with the DNA replication machinery and the elicited DNA damage response (DDR) have not yet been studied. Here, we analyzed PhIP-triggered replicative stress and elucidated the role of the apical DDR kinases ATR, ATM and DNA-PKcs in the cellular defense response. First, we demonstrate that PhIP induced C8-PhIP-dG adducts and DNA strand breaks...
September 5, 2016: Nucleic Acids Research
G Xi, E Hayes, R Lewis, S Ichi, B Mania-Farnell, K Shim, T Takao, E Allender, C S Mayanil, T Tomita
No abstract text is available yet for this article.
September 5, 2016: Oncogene
Yung-Luen Shih, Jason Chou, Ming-Yang Yeh, Hsiao-Min Chou, Hsiu-Chen Chou, Hsu-Feng Lu, Hung-Sheng Shang, Fu-Shin Chueh, Yung-Lin Chu, Shu-Ching Hsueh, Jing-Gung Chung
Casticin, a polymethoxyflavone, has been demonstrated to possess anticancer activities, yet no study has shown in detail that casticin induces DNA damage in lung cancer cells. The purpose of this study was to investigate the possible molecular mechanisms of casticin which induce DNA damage and nuclear condensation in murine melanoma cancer B16F10 cells. In this study, by examining and capturing images using phase contrast microscopy, we found that casticin induced cell morphological changes. Moreover, it decreased the total number of viable cells which was measured by flow cytometry...
October 2016: Oncology Reports
Xuehui Hong, Wenyu Liu, Ruipeng Song, Jamie J Shah, Xing Feng, Chi Kwan Tsang, Katherine M Morgan, Samuel F Bunting, Hiroyuki Inuzuka, X F Steven Zheng, Zhiyuan Shen, Hatem E Sabaawy, LianXin Liu, Sharon R Pine
SOX9 encodes a transcription factor that governs cell fate specification throughout development and tissue homeostasis. Elevated SOX9 is implicated in the genesis and progression of human tumors by increasing cell proliferation and epithelial-mesenchymal transition. We found that in response to UV irradiation or genotoxic chemotherapeutics, SOX9 is actively degraded in various cancer types and in normal epithelial cells, through a pathway independent of p53, ATM, ATR and DNA-PK. SOX9 is phosphorylated by GSK3β, facilitating the binding of SOX9 to the F-box protein FBW7α, an E3 ligase that functions in the DNA damage response pathway...
October 14, 2016: Nucleic Acids Research
Savita Devi, Suhail A Ansari, Shivendra Tenguria, Naveen Kumar, Niyaz Ahmed
Helicobacter pylori portrays a classical paradigm of persistent bacterial infections. A well balanced homeostasis of bacterial effector functions and host responses is purported to be the key in achieving long term colonization in specific hosts. H. pylori nucleases have been shown to assist in natural transformation, but their role in virulence and colonization remains elusive. Therefore, it is imperative to understand the involvement of these nucleases in the pathogenesis of H. pylori Here, we report the multifaceted role of a TNFR-1 interacting endonuclease A (TieA) from H...
August 22, 2016: Nucleic Acids Research
Prabakaran D Subramanian, Zhengzhe An, Jae-Ran Yu, Woo-Yoon Park
PURPOSE: Overexpression of epidermal growth factor receptor (EGFR) is related to chemo-/radioresistance and poor prognosis in many cancers. EGFR is activated by cisplatin, and this may lead to resistance to this drug. Fused toes homolog (FTS) is an E2 variant that lacks the active cysteine residue required for ubiquitin transfer. Previously, we reported that FTS interacts with EGFR and activates DNA-dependent protein kinase (DNA-PK) upon irradiation. Here, we investigated the role of FTS in cisplatin sensitivity in ME180 cervical cancer cells...
October 2016: Cancer Chemotherapy and Pharmacology
Patrick F Connolly, Howard O Fearnhead
Differentiation of myoblasts into myotubes is essential for skeletal muscle development and regeneration. Caspase-3 and caspase-9 are required for efficient myoblast differentiation. The caspase-activated endonuclease activity, CAD, and the DNA-damage repair protein XRCC1 have also been shown to be required to complete differentiation. DNA-damage associated with differentiation is accompanied by phosphorylation of Histone 2AX, an event normally catalysed by kinases ATR, ATM or DNA-PK. However, the kinase responsible for phosphorylation during differentiation is not known...
October 2016: FEBS Journal
Adrian P Wiegmans, Mariska Miranda, Shu Wen Wen, Fares Al-Ejeh, Andreas Möller
The molecular rationale to induce synthetic lethality, by targeting defective homologous recombination repair in triple negative breast cancer (TNBC), has proven to have several shortcomings. Not meeting the expected minimal outcomes in clinical trials has highlighted common clinical resistance mechanisms including; increased expression of the target gene PARP1, increased expression or reversion mutation of BRCA1, or up-regulation of the compensatory homologous recombination protein RAD51. Indeed, RAD51 has been demonstrated to be an alternative synthetic lethal target in BRCA1-mutated cancers...
August 5, 2016: Oncotarget
Megan van Overbeek, Daniel Capurso, Matthew M Carter, Matthew S Thompson, Elizabeth Frias, Carsten Russ, John S Reece-Hoyes, Christopher Nye, Scott Gradia, Bastien Vidal, Jiashun Zheng, Gregory R Hoffman, Christopher K Fuller, Andrew P May
The repair outcomes at site-specific DNA double-strand breaks (DSBs) generated by the RNA-guided DNA endonuclease Cas9 determine how gene function is altered. Despite the widespread adoption of CRISPR-Cas9 technology to induce DSBs for genome engineering, the resulting repair products have not been examined in depth. Here, the DNA repair profiles of 223 sites in the human genome demonstrate that the pattern of DNA repair following Cas9 cutting at each site is nonrandom and consistent across experimental replicates, cell lines, and reagent delivery methods...
August 18, 2016: Molecular Cell
Ali Bakr, Sabrina Köcher, Jennifer Volquardsen, Cordula Petersen, Kerstin Borgmann, Ekkehard Dikomey, Kai Rothkamm, Wael Y Mansour
End processing at DNA double strand breaks (DSB) is a decisive step in repair pathway selection. Here, we investigated the role of 53BP1/RIF1 in limiting BRCA1/CtIP-mediated end resection to control DSB repair pathway choice. ATM orchestrates this process through 53BP1 phosphorylation to promote RIF1 recruitment. As cells enter S/G2-phase, end resection is activated, which displaces pATM from DSB sites and diminishes 53BP1 phosphorylation and RIF1 recruitment. Consistently, the kinetics of ATM and 53BP1 phosphorylation in S/G2-phase concur...
August 2, 2016: Oncotarget
Hamadeh Tarazi, Ekram Saleh, Raafat El-Awady
DNA-dependent protein kinase (DNA-PK) is a key enzyme in non-homologous DNA end joining (NHEJ) repair pathway. The targeted inhibition of such enzyme would furnish a valuable option for cancer treatment. In this study we report the development of validation of enzyme homology model, and the subsequent use of this model to perform docking-based virtual screening against a database of FDA-approved drugs. The nominated highest ranking hits (Praziquantel and Dutasteride) were subjected to biological investigation...
July 28, 2016: Biomedicine & Pharmacotherapy, Biomédecine & Pharmacothérapie
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"