Read by QxMD icon Read


Dongyin Su, Timothy P Devarenne
Plant Sucrose non-Fermenting 1-Related Protein Kinase1 (SnRK1) complexes are members of the Snf1/AMPK/SnRK protein kinase family and play important roles in many aspects of metabolism. In tomato (Solanum lycopersicum, Sl), only one α-subunit of the SnRK1 complex, SlSnRK1.1, has been characterized to date. In this study, the phylogenetic placement and in vitro kinase activity of a second tomato SnRK1 α-subunit, SlSnRK1.2, were characterized. Interestingly, in the phylogenetic analysis of SnRK1 sequences from monocots and dicots SlSnRK1...
May 16, 2018: Biochimica et Biophysica Acta
Qianru Xu, Wei Pan, Ranran Zhang, Qi Lu, Wanlei Xue, Cainan Wu, Bixiu Song, Shaoting Du
Cadmium (Cd) contamination of agricultural soils represents a serious risk to crop safety. A new strategy using abscisic acid (ABA)-generating bacteria, Bacillus subtilis or Azospirillum brasilense, was developed to reduce the Cd accumulation in plants grown in Cd-contaminated soil. Inoculation with either bacterium resulted in a pronounced increase in the ABA level in wild-type Arabidopsis Col-0 plants, accompanied by a decrease in Cd levels in plant tissues, which mitigated the Cd toxicity. As a consequence, the growth of plants exposed to Cd was improved...
May 8, 2018: Journal of Agricultural and Food Chemistry
Uche Godfrey Okeke, Deniz Akdemir, Ismail Rabbi, Peter Kulakow, Jean-Luc Jannink
The HarvestPlus program for cassava ( Crantz) fortifies cassava with β-carotene by breeding for carotene-rich tubers (yellow cassava). However, a negative correlation between yellowness and dry matter (DM) content has been identified. We investigated the genetic control of DM in white and yellow cassava. We used regional heritability mapping (RHM) to associate DM with genomic segments in both subpopulations. Significant segments were subjected to candidate gene analysis and candidates were validated with prediction accuracies...
March 2018: Plant Genome
Shunya Saito, Shin Hamamoto, Koko Moriya, Aiko Matsuura, Yoko Sato, Jun Muto, Hiroto Noguchi, Seiji Yamauchi, Yuzuru Tozawa, Minoru Ueda, Kenji Hashimoto, Philipp Köster, Qiuyan Dong, Katrin Held, Jörg Kudla, Toshihiko Utsumi, Nobuyuki Uozumi
N-myristoylation and S-acylation promote protein membrane association, allowing regulation of membrane proteins. However, how widespread this targeting mechanism is in plant signaling processes remains unknown. Through bioinformatics analyses, we determined that among plant protein kinase families, the occurrence of motifs indicative for dual lipidation by N-myristoylation and S-acylation is restricted to only five kinase families, including the Ca2+ -regulated CDPK-SnRK and CBL protein families. We demonstrated N-myristoylation of CDPK-SnRKs and CBLs by incorporation of radiolabeled myristic acid...
June 2018: New Phytologist
Jie Li, Bin Feng, Yaohui Nie, Ping Jiao, Xiaochen Lin, Mengna Huang, Ran An, Qin He, Huilin Emily Zhou, Arthur Salomon, Kirsten S Sigrist, Zhidan Wu, Simin Liu, Haiyan Xu
Sucrose nonfermenting-related kinase (SNRK) is a member of the AMPK-related kinase family, and its physiological role in adipose energy homeostasis and inflammation remains unknown. We previously reported that SNRK is ubiquitously and abundantly expressed in both white adipose tissue (WAT) and brown adipose tissue (BAT), but SNRK expression diminishes in adipose tissue in obesity. In this study we report novel experimental findings from both animal models and human genetics. SNRK is essential for survival; SNRK globally deficient pups die within 24 h after birth...
March 2018: Diabetes
Qiulun Lu, Zhonglin Xie, Chenghui Yan, Ye Ding, Zejun Ma, Shengnan Wu, Yu Qiu, Stephanie M Cossette, Michelle Bordas, Ramani Ramchandran, Ming-Hui Zou
OBJECTIVE: SNRK (sucrose nonfermenting 1-related kinase) is a novel member of the AMPK (adenosine monophosphate-activated protein kinase)-related superfamily that is activated in the process of angiogenesis. Currently, little is known about the function of SNRK in angiogenesis in the physiological and pathological conditions. APPROACH AND RESULTS: In this study, in Snrk global heterozygous knockout mice, retina angiogenesis and neovessel formation after hindlimb ischemia were suppressed...
February 2018: Arteriosclerosis, Thrombosis, and Vascular Biology
Naganand Rayapuram, Jean Bigeard, Hanna Alhoraibi, Ludovic Bonhomme, Anne-Marie Hesse, Joëlle Vinh, Heribert Hirt, Delphine Pflieger
In Arabidopsis, mitogen-activated protein kinases MPK3, MPK4, and MPK6 constitute essential relays for a variety of functions including cell division, development and innate immunity. Although some substrates of MPK3, MPK4 and MPK6 have been identified, the picture is still far from complete. To identify substrates of these MAPKs likely involved in cell division, growth and development we compared the phosphoproteomes of wild-type and mpk3 , mpk4 , and mpk6. To study the function of these MAPKs in innate immunity, we analyzed their phosphoproteomes following microbe-associated molecular pattern (MAMP) treatment...
January 2018: Molecular & Cellular Proteomics: MCP
Yu-Lu Wang, Jue Wang, Xiang Chen, Zhi-Xin Wang, Jia-Wei Wu
Sucrose non-fermenting (Snf1)-related kinase (SNRK) is a novel member of the AMP-activated protein kinase (AMPK) family and is involved in many metabolic processes. Here we report the crystal structure of an N-terminal SNRK fragment containing kinase and adjacent ubiquitin-associated (UBA) domains. This structure shows that the UBA domain binds between the N- and C-lobes of the kinase domain. The mode of UBA binding in SNRK largely resembles that in AMPK and brain specific kinase (BRSK), however, unique interactions play vital roles in stabilizing the KD-UBA interface of SNRK...
January 1, 2018: Biochemical and Biophysical Research Communications
Elizabeth E Hopp, Stephanie M Cossette, Suresh N Kumar, Daniel Eastwood, Ramani Ramchandran, Erin Bishop
Sucrose non-fermenting related kinase (SNRK) is a serine/threonine kinase known to regulate cellular metabolism and adipocyte inflammation. Since alterations in adipocyte metabolism play a role in ovarian cancer metastasis, we investigated the expression of SNRK in benign and malignant human ovarian tissue using immunohistochemistry and qPCR. The number of SNRK positive (+) nuclei is increased in malignant tissue compared to benign tissue (21.03% versus 14.90%, p < .0431). The most strongly stained malignant SNRK+ nuclei were stage 1 compared to stage 2-4 disease...
August 9, 2017: Cancer Investigation
Mengmeng Zhu, Tong Zhang, Wei Ji, Cecilia Silva-Sanchez, Wen-Yuan Song, Sarah M Assmann, Alice C Harmon, Sixue Chen
Kinase-mediated phosphorylation is a pivotal regulatory process in stomatal responses to stresses. Through a redox proteomics study, a sucrose non-fermenting 1-related protein kinase (SnRK2.4) was identified to be redox-regulated in Brassica napus guard cells upon abscisic acid treatment. There are six genes encoding SnRK2.4 paralogs in B. napus Here, we show that recombinant BnSnRK2.4-1C exhibited autophosphorylation activity and preferentially phosphorylated the N-terminal region of B. napus slow anion channel (BnSLAC1-NT) over generic substrates...
July 17, 2017: Biochemical Journal
Juan Mao, Wenfang Li, Baoqin Mi, Mohammed Mujitaba Dawuda, Alejandro Calderón-Urrea, Zonghuan Ma, Yongmei Zhang, Baihong Chen
Exogenously applied 2% fructose is the most appropriate carbon source that enhances photosynthesis and growth of grape plantlets compared with the same concentrations of sucrose and glucose. The role of the sugars was regulated by the expression of key candidate genes related to hormones, key metabolic enzymes, and sugar metabolism of grape plantlets ( Vitis vinifera L.) grown in vitro. The addition of sugars including sucrose, glucose, and fructose is known to be very helpful for the development of grape (V...
September 2017: Planta
Peng Wu, Wenli Wang, Weike Duan, Ying Li, Xilin Hou
The CDPK-SnRK (calcium-dependent protein kinase/Snf1-related protein kinase) gene superfamily plays important roles in signaling pathways for disease resistance and various stress responses, as indicated by emerging evidence. In this study, we constructed comparative analyses of gene structure, retention, expansion, whole-genome duplication (WGD) and expression patterns of CDPK-SnRK genes in Brassica rapa and their evolution in plants. A total of 49 BrCPKs, 14 BrCRKs, 3 BrPPCKs, 5 BrPEPRKs, and 56 BrSnRKs were identified in B...
2017: Frontiers in Plant Science
Amy K Rines, Hsiang-Chun Chang, Rongxue Wu, Tatsuya Sato, Arineh Khechaduri, Hidemichi Kouzu, Jason Shapiro, Meng Shang, Michael A Burke, Xinghang Jiang, Chunlei Chen, Tenley A Rawlings, Gary D Lopaschuk, Paul T Schumacker, E Dale Abel, Hossein Ardehali
Ischaemic heart disease limits oxygen and metabolic substrate availability to the heart, resulting in tissue death. Here, we demonstrate that the AMP-activated protein kinase (AMPK)-related protein Snf1-related kinase (SNRK) decreases cardiac metabolic substrate usage and mitochondrial uncoupling, and protects against ischaemia/reperfusion. Hearts from transgenic mice overexpressing SNRK have decreased glucose and palmitate metabolism and oxygen consumption, but maintained power and function. They also exhibit decreased uncoupling protein 3 (UCP3) and mitochondrial uncoupling...
January 24, 2017: Nature Communications
Stephanie M Cossette, Vijesh J Bhute, Xiaoping Bao, Leanne M Harmann, Mark A Horswill, Indranil Sinha, Adam Gastonguay, Shabnam Pooya, Michelle Bordas, Suresh N Kumar, Shama P Mirza, Sean P Palecek, Jennifer L Strande, Ramani Ramchandran
BACKGROUND: Cardiac metabolism is critical for the functioning of the heart, and disturbance in this homeostasis is likely to influence cardiac disorders or cardiomyopathy. Our laboratory has previously shown that SNRK (sucrose nonfermenting related kinase) enzyme, which belongs to the AMPK (adenosine monophosphate-activated kinase) family, was essential for cardiac metabolism in mammals. Snrk global homozygous knockout (KO) mice die at postnatal day 0, and conditional deletion of Snrk in cardiomyocytes (Snrk cmcKO) leads to cardiac failure and death by 8 to 10 months...
December 2016: Circulation. Cardiovascular Genetics
Fuqiang Cui, Mikael Brosché, Mikko T Lehtonen, Ali Amiryousefi, Enjun Xu, Matleena Punkkinen, Jari P T Valkonen, Hiroaki Fujii, Kirk Overmyer
The cuticle is the outer physical barrier of aerial plant surfaces and an important interaction point between plants and the environment. Many environmental stresses affect cuticle formation, yet the regulatory pathways involved remain undefined. We used a genetics and gene expression analysis in Arabidopsis thaliana to define an abscisic acid (ABA) signaling loop that positively regulates cuticle formation via the core ABA signaling pathway, including the PYR/PYL receptors, PP2C phosphatase, and SNF1-Related Protein Kinase (SnRK) 2...
June 6, 2016: Molecular Plant
Lianzhe Wang, Wei Hu, Jiutong Sun, Xiaoyu Liang, Xiaoyue Yang, Shuya Wei, Xiatian Wang, Yi Zhou, Qiang Xiao, Guangxiao Yang, Guangyuan He
The sucrose non-fermenting 1 (SNF1)-related protein kinases (SnRKs) play key roles in plant signaling pathways including responses to biotic and abiotic stresses. Although SnRKs have been systematically studied in Arabidopsis and rice, there is no information concerning SnRKs in the new Poaceae model plant Brachypodium distachyon. In the present study, a total of 44 BdSnRKs were identified and classified into three subfamilies, including three members of BdSnRK1, 10 of BdSnRK2 and 31 of BdSnRK3 (CIPK) subfamilies...
August 2015: Plant Science: An International Journal of Experimental Plant Biology
Carson M Andorf, Mykhailo Kopylov, Drena Dobbs, Karen E Koch, M Elizabeth Stroupe, Carolyn J Lawrence, Hank W Bass
The G-quadruplex (G4) elements comprise a class of nucleic acid structures formed by stacking of guanine base quartets in a quadruple helix. This G4 DNA can form within or across single-stranded DNA molecules and is mutually exclusive with duplex B-form DNA. The reversibility and structural diversity of G4s make them highly versatile genetic structures, as demonstrated by their roles in various functions including telomere metabolism, genome maintenance, immunoglobulin gene diversification, transcription, and translation...
December 20, 2014: Journal of Genetics and Genomics, Yi Chuan Xue Bao
Stephanie M Cossette, Adam J Gastonguay, Xiaoping Bao, Alexandra Lerch-Gaggl, Ling Zhong, Leanne M Harmann, Christopher Koceja, Robert Q Miao, Padmanabhan Vakeel, Changzoon Chun, Keguo Li, Jamie Foeckler, Michelle Bordas, Hartmut Weiler, Jennifer Strande, Sean P Palecek, Ramani Ramchandran
In this study, we have identified a novel member of the AMPK family, namely Sucrose non-fermenting related kinase (Snrk), that is responsible for maintaining cardiac metabolism in mammals. SNRK is expressed in the heart, and brain, and in cell types such as endothelial cells, smooth muscle cells and cardiomyocytes (CMs). Snrk knockout (KO) mice display enlarged hearts, and die at postnatal day 0. Microarray analysis of embryonic day 17.5 Snrk hearts, and blood profile of neonates display defect in lipid metabolic pathways...
2014: Biology Open
Ren-You Gan, Hua-Bin Li
Liver kinase B1 (LKB1), known as a serine/threonine kinase, has been identified as a critical cancer suppressor in many cancer cells. It is a master upstream kinase of 13 AMP-activated protein kinase (AMPK)-related protein kinases, and possesses versatile biological functions. LKB1 gene is mutated in many cancers, and its protein can form different protein complexes with different cellular localizations in various cell types. The expression of LKB1 can be regulated through epigenetic modification, transcriptional regulation and post-translational modification...
2014: International Journal of Molecular Sciences
Jingli Yan, Fangfang Niu, Wu-Zhen Liu, Hanfeng Zhang, Boya Wang, Wenzhi Lan, Yufen Che, Bo Yang, Sheng Luan, Yuan-Qing Jiang
Calcium is a ubiquitous intracellular secondary messenger in plants. Calcineurin B-like proteins (CBLs), which contain four Ca(2+)-binding EF hand motifs, are Ca(2+) sensors and regulate a group of Ser/Thr protein kinases called CBL-interacting protein kinases (CIPKs). Although the CBL-CIPK network has been demonstrated to play crucial roles in plant development and responses to various environmental stresses in Arabidopsis, little is known about their function in glucose signaling. In the present study, we identified CIPK14 gene from Arabidopsis that play a role in glucose signaling...
August 8, 2014: Biochemical and Biophysical Research Communications
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"