Read by QxMD icon Read


Audrey M Bernstein, Robert Ritch, J Mario Wolosin
Exfoliation syndrome (XFS) is an age-related disease involving the deposition of aggregated fibrillar material (XFM) at extracellular matrices in tissues that synthesize elastic fibers. Its main morbidity is in the eye, where XFM accumulations form on the surface of the ciliary body, iris and lens. Exfoliation glaucoma (XFG) occurs in a high proportion of persons with XFS and can be a rapidly progressing disease. Worldwide, XFG accounts for about 25% of open-angle glaucoma cases. XFS and XFG show a sharp age-dependence, similarly to the many age-related diseases classified as aggregopathies...
March 15, 2018: Journal of Glaucoma
Chye Soi Moi, Chia Kin Yen, Khuen Yen Ng, Koh Rhun Yian
Protein misfolding and aggregation have been considered the common pathological hallmarks for a number of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). These abnormal proteins aggregation damage mitochondria and induce oxidative stress and resulting neuronal cell death. Prolong neuronal damage activates microglia and astrocytes, development of inflammation reaction and further promotes neurodegeneration. Thus, elimination of abnormal proteins aggregation without eliciting any adverse effects are the main treatment strategies...
March 15, 2018: CNS & Neurological Disorders Drug Targets
Tiffany A Thibaudeau, Raymond T Anderson, David M Smith
Protein accumulation and aggregation with a concomitant loss of proteostasis often contribute to neurodegenerative diseases, and the ubiquitin-proteasome system plays a major role in protein degradation and proteostasis. Here, we show that three different proteins from Alzheimer's, Parkinson's, and Huntington's disease that misfold and oligomerize into a shared three-dimensional structure potently impair the proteasome. This study indicates that the shared conformation allows these oligomers to bind and inhibit the proteasome with low nanomolar affinity, impairing ubiquitin-dependent and ubiquitin-independent proteasome function in brain lysates...
March 15, 2018: Nature Communications
Adelaide Tawiah, Steve Cornick, France Moreau, Hayley Gorman, Manish Kumar, Sameer Tiwari, Kris Chadee
MUC2 mucin is a large glycoprotein produced by goblet cells that forms the protective mucus blanket overlying the intestinal epithelium as the first line of innate host defense. High MUC2 production in inflammatory bowel disease and infectious colitis depletes goblet cells and the mucus layer by an unknown mechanism. Here, we analyzed the effect of high MUC2 biosynthesis on endoplasmic reticulum (ER) stress and apoptosis in goblet cells using a high MUC2-producing human goblet cell line (HT29-H) and a HT29-H clone (HT29-L) silenced for MUC2 expression by lentivirus-mediated shRNA...
March 12, 2018: American Journal of Pathology
Sebastian Hiller, Björn M Burmann
Living cells contain molecular chaperones that are organized in intricate networks to surveil protein homeostasis by avoiding polypeptide misfolding, aggregation, and the generation of toxic species. In addition, cellular chaperones also fulfill a multitude of alternative functionalities: transport of clients towards a target location, help them fold, unfold misfolded species, resolve aggregates, or deliver clients towards proteolysis machineries. Until recently, the only available source of atomic resolution information for virtually all chaperones were crystal structures of their client-free, apo-forms...
April 2018: Journal of Magnetic Resonance
Bernd R Gardill, Ricardo E Rivera-Acevedo, Ching-Chieh Tung, Mark Okon, Lawrence P McIntosh, Filip Van Petegem
Voltage-gated sodium channels (NaV ) are responsible for the rapid depolarization of many excitable cells. They readily inactivate, a process where currents diminish after milliseconds of channel opening. They are also targets for a multitude of disease-causing mutations, many of which have been shown to affect inactivation. A cluster of disease mutations, linked to Long-QT and Brugada syndromes, is located in a C-terminal EF-hand like domain of NaV 1.5, the predominant cardiac sodium channel isoform. Previous studies have suggested interactions with the III-IV linker, a cytosolic element directly involved in inactivation...
March 14, 2018: Scientific Reports
Jing Sun, Yarong Mu, Yuanyuan Jiang, Ruilong Song, Jianxin Yi, Jingsong Zhou, Jun Sun, Xinan Jiao, Richard A Prinz, Yi Li, Xiulong Xu
Autophagy plays a central role in degrading misfolded proteins such as mutated superoxide dismutase 1 (SOD1), which forms aggregates in motor neurons and is involved in the pathogenesis of amyotrophic lateral sclerosis (ALS). Autophagy is activated when UNC-51-like kinase 1 (ULK1) is phosphorylated at S555 and activated by AMP-activated protein kinase (AMPK). Autophagy is suppressed when ULK1 is phosphorylated at S757 by the mechanistic target of rapamycin (mTOR). Whether p70 S6 kinase 1 (S6K1), a serine/threonine kinase downstream of mTOR, can also regulate autophagy remains uncertain...
March 14, 2018: Cell Death & Disease
Tianmeng Yu, Wenhu Zhou, Juewen Liu
The EtNa DNAzyme was isolated during the isopropanol precipitation step of an in vitro selection effort. Although inactive with the intended cofactor, its RNA cleavage activity was observed under a few conditions. With Na+, EtNa is highly active in around 50% ethanol, while in water it is highly active with Ca2+. In this work, we show that the EtNa DNAzyme is accelerated by freezing in water in the presence of Na+. The apparent Kd reached 6.2 mM Na+ under the frozen condition, over 20-fold tighter than that in water at room temperature...
March 14, 2018: Chembiochem: a European Journal of Chemical Biology
Yingjie Miao, Guotong Xiong, Ruoyun Li, Zufang Wu, Xin Zhang, Peifang Weng
Issatchenkia orientalis, a non-Saccharomyces yeast that can resist a wide variety of environmental stresses, has potential use in winemaking and bioethanol production. Little is known about gene expression or the physiology of I. orientalis under ethanol stress. In this study, high-throughput RNA sequencing was used to investigate the transcriptome profile of I. orientalis in response to ethanol. 502 gene transcripts were differentially expressed, of which 451 were more abundant, and 51 less abundant, in cells subjected to 4 h of ethanol stress (10% v/v)...
March 13, 2018: AMB Express
Sonja Oehmcke-Hecht, Juliane Köhler
The name human contact system is related to its mode of action, as "contact" with artificial negatively charged surfaces triggers its activation. Today, it is generally believed that the contact system is an inflammatory response mechanism not only against artificial material but also against misfolded proteins and foreign organisms. Upon activation, the contact system is involved in at least two distinct (patho)physiologic processes: i . the trigger of the intrinsic coagulation via factor XI and ii ...
2018: Frontiers in Immunology
Ying-Chun Shih, Chao-Ling Chen, Yan Zhang, Rebecca L Mellor, Evelyn M Kanter, Yun Fang, Hua-Chi Wang, Chen-Ting Hung, Jing-Yi Nong, Hui-Ju Chen, Tzu-Han Lee, Yi-Shuan Tseng, Chiung-Nien Chen, Chau-Chung Wu, Shuei-Liong Lin, Kathryn A Yamada, Jeanne M Nerbonne, Kai-Chien Yang
<u>Rationale:</u> Cardiac fibrosis plays a critical role in the pathogenesis of heart failure (HF). Excessive accumulation of extracellular matrix (ECM) resulting from cardiac fibrosis impairs cardiac contractile function and increases arrhythmogenicity. Current treatment options for cardiac fibrosis, however, are limited and there is a clear need to identify novel mediators of cardiac fibrosis to facilitate the development of better therapeutics. Exploiting co-expression gene network analysis on RNA sequencing data from failing human heart, we identified thioredoxin domain containing 5 (TXNDC5), a cardiac fibroblast (CF)-enriched endoplasmic reticulum (ER) protein, as a potential novel mediator of cardiac fibrosis and we completed experiments to test this hypothesis directly...
March 13, 2018: Circulation Research
Rohini Karunakaran, P S Srikumar
The crystallins are a family of monomeric proteins present in the mammalian lens and mutations in these proteins cause various forms of cataracts. The aim of our current study is to emphasize the structural characterization of aggregation propensity of mutation R58H on γD crystallin using molecular dynamics (MD) approach. MD result revealed that difference in the sequence level display a wide variation in the backbone atomic position, and thus exhibits rigid conformational dynamics. Changes in the flexibility of residues favoured to increase the number of intra-molecular hydrogen bonds in mutant R58H...
March 12, 2018: Molecular and Cellular Biochemistry
Yue Xu, Lei Cui, Anthony Dibello, Lihui Wang, Juhyung Lee, Layla Saidi, Jin-Gu Lee, Yihong Ye
Cell-to-cell transmission of misfolded proteins propagates proteotoxic stress in multicellular organisms when transmitted polypeptides serve as a seeding template to cause protein misfolding in recipient cells, but how misfolded proteins are released from cells to initiate this process is unclear. Misfolding-associated protein secretion (MAPS) is an unconventional protein-disposing mechanism that specifically exports misfolded cytosolic proteins including various neurodegenerative disease-causing proteins. Here we establish the HSC70 co-chaperone DNAJC5 as an essential mediator of MAPS...
2018: Cell Discovery
Paolo Milani, Giampaolo Merlini, Giovanni Palladini
Light chain (AL) amyloidosis is caused by a usually small plasma-cell clone that is able to produce the amyloidogenic light chains. They are able to misfold and aggregate, deposit in tissues in the form of amyloid fibrils and lead to irreversible organ dysfunction and eventually death if treatment is late or ineffective. Cardiac damage is the most important prognostic determinant. The risk of dialysis is predicted by the severity of renal involvement, defined by the baseline proteinuria and glomerular filtration rate, and by the response to therapy...
2018: Mediterranean Journal of Hematology and Infectious Diseases
José A Del Río, Isidre Ferrer, Rosalina Gavín
Several studies have indicated that certain misfolded amyloids composed of tau, β-amyloid or α-synuclein can be transferred from cell to cell, suggesting the contribution of mechanisms reminiscent of those by which infective prions spread through the brain. This process of a 'prion-like' spreading between cells is also relevant as a novel putative therapeutic target that could block the spreading of proteinaceous aggregates throughout the brain which may underlie the progressive nature of neurodegenerative diseases...
March 9, 2018: Progress in Neurobiology
Xuewei Dong, Qin Qiao, Zhenyu Qian, Guanghong Wei
The amyloid deposits of human islet amyloid polypeptide (hIAPP) are found in type II diabetes patients. hIAPP monomer is intrinsically disordered in solution, whereas it can form amyloid fibrils both in vivo and in vitro. Extensive evidence suggests that hIAPP causes the disruption of cellular membrane, and further induces cytotoxicity and the death of islet β-cells in pancreas. The presence of membrane also accelerates the hIAPP fibril formation. hIAPP oligomers and protofibrils in the early stage of aggregation were reported to be the most cytotoxic, disrupting the membrane integrity and giving rise to the pathological process...
March 9, 2018: Biochimica et Biophysica Acta
Giuseppe Battaglia, Valeria Bruno
Amyotrophic lateral sclerosis (ALS) is a complex genetic, late age-onset, progressive neurodegenerative disorder leading to the death of upper and lower motor neurons. Life expectancy after diagnosis is short due to the ongoing degeneration and to the lack of effective treatments. Axonal alterations, mitochondrial deficits, RNA changes, protein misfolding and turnover, glial dysfunction and hyperexcitability are key players in molecular mechanisms involved in the degeneration of motor neurons. In the context of hyperexcitability, metabotropic glutamate (mGlu) receptors, which are widely distributed throughout the central nervous system and act through many intracellular signaling pathways, are emerging as novel potential drug targets for the therapeutic treatment of ALS, as they are able to counteract excitotoxicity by reducing glutamate release and inducing the production of neurotrophic factors...
March 9, 2018: Current Opinion in Pharmacology
Therese W Herling, Aviad Levin, Kadi L Saar, Christopher M Dobson, Tuomas P J Knowles
The self-assembly of proteins into supramolecular structures and machinery underpins biological activity in living systems. Misassembled, misfolded and aggregated protein structures can, by contrast, have deleterious activity and such species are at the origin of a number of disease states ranging from cancer to neurodegenerative disorders. In particular, the formation of highly ordered protein aggregates, amyloid fibrils, from normally soluble peptides and proteins, is the common pathological hallmark of a range a group of over fifty protein misfolding disorders...
March 12, 2018: Lab on a Chip
Yasuhiro Maejima
Autophagy is an evolutionarily conserved process for degradation of long-lived proteins and organelles that govern a number of cardiac pathologies which cause heart failure. Indeed, recent investigations have uncovered pathways that regulate autophagy in the heart and underlying mechanisms by which alterations in this process affect cardiac function and structure. One of the major roles of autophagy in cardiomyocytes is the intracellular protein quality control (PQC). Impairment of autophagy causes aggregation of damaged and/or misfolded proteins in cardiomyocytes, thereby damaging the cells which, in turn leads to pathological cardiac remodeling...
2018: Nihon Yakurigaku Zasshi. Folia Pharmacologica Japonica
Vijayaraghavan Rangachari, Dexter N Dean, Pratip Rana, Ashwin Vaidya, Preetam Ghosh
Self-templating propagation of protein aggregate conformations is increasingly becoming a significant factor in many neurological diseases. In Alzheimer disease (AD), intrinsically disordered amyloid-β (Aβ) peptides undergo aggregation that is sensitive to environmental conditions. High-molecular weight aggregates of Aβ that form insoluble fibrils are deposited as senile plaques in AD brains. However, low-molecular weight aggregates called soluble oligomers are known to be the primary toxic agents responsible for neuronal dysfunction...
March 8, 2018: Biochimica et Biophysica Acta
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"