Read by QxMD icon Read

Magnetic field

Eric J Keller, Shanna Fang, Kai Lin, Benjamin H Freed, Peter M Smith, Bruce S Spottiswoode, Rachel Davids, Maria Carr, Marie-Pierre Jolly, Michael Markl, James C Carr, Jeremy D Collins
The purpose of this study was to assess the consistency of semi-automated myocardial strain analysis by prototype software across field strengths, temporal resolutions, and examinations. 35 volunteers (48 ± 13 years; 20% women) and 25 patients (54 ± 12 years; 44% women) without significant cardiac dysfunction underwent cine cardiac magnetic resonance imaging (CMR) at 1.5 T with a temporal resolution of 39.2 msec. 34 subjects also underwent imaging at 3.0 T; 16 had repeat examinations within 14 days; and 9 underwent CMR with temporal resolutions of 12...
February 26, 2017: International Journal of Cardiovascular Imaging
Alejandro V Funes, Luca Carrella, Yvonne Rechkemmer, Joris van Slageren, Eva Rentschler, Pablo Alborés
We have successfully prepared and structurally characterized a family of butterfly-like [CoLn] complexes where all magnetic properties are due to the Ln(iii) ions. The complexes with Ln = Tb(1), Dy(2), Ho(3), Er(4) and Yb(5) are iso-structural. An exception is the complex with Ln = Gd(6) which strings in a one dimensional chain. The structural similarity together with the high tendency of the crystallites to align under an applied magnetic field allowed an overall DC magnetic data treatment to extract phenomenological crystal field parameters and hence to determine the ground state multiplet energy level splitting...
February 27, 2017: Dalton Transactions: An International Journal of Inorganic Chemistry
Damien Mertz, Olivier Sandre, Sylvie Begin-Colin
The use of an alternating magnetic field (AMF) to generate non-invasively and spatially a localized heating from a magnetic nano-mediator has become very popular these last years to develop magnetic hyperthermia (MH) as a promising therapeutic modality already used in the clinics. AMF has become highly attractive this last decade over others radiations, as AMF allows a deeper penetration in the body and a less harmful ionizing effect. In addition to pure MH which induces tumor cell death through local T elevation, this AMF-generated magneto-thermal effect can also be exploited as a relevant external stimulus to trigger a drug release from drug-loaded magnetic nanocarriers, temporally and spatially...
February 23, 2017: Biochimica et Biophysica Acta
Xiaolian Sun, Shouheng Sun
Magnetic nanoparticles have obtained great attention in the field of biomedicine in recent years owing to their excellent biocompatibility, unique magnetic properties, and ease of functionalization. Potential applications for functionalized magnetic nanoparticles span biomedical imaging, treatment via magnetic hyperthermia, drug delivery, and biosensing. This chapter provides detailed procedures for the synthesis, PEGylation, and bioconjugation of monodispersed Fe3O4 nanoparticles, hollow Fe3O4 nanoparticles, porous hollow Fe3O4 nanoparticles, and dumbbell-like Au-Fe3O4 nanoparticles...
2017: Methods in Molecular Biology
Lorena Maldonado-Camargo, Mythreyi Unni, Carlos Rinaldi
Iron oxide nanoparticles are of interest in a wide range of biomedical applications due to their response to applied magnetic fields and their unique magnetic properties. Magnetization measurements in constant and time-varying magnetic field are often carried out to quantify key properties of iron oxide nanoparticles. This chapter describes the importance of thorough magnetic characterization of iron oxide nanoparticles intended for use in biomedical applications. A basic introduction to relevant magnetic properties of iron oxide nanoparticles is given, followed by protocols and conditions used for measurement of magnetic properties, along with examples of data obtained from each measurement, and methods of data analysis...
2017: Methods in Molecular Biology
Yahui Pan, Wenzhe Pang, Jie Lv, Jing Wang, Caiqin Yang, Wei Guo
In present study, based on the two polymorphs (α and β form) of azelnidipine (AZE), 12 complexes of AZE and oxalic acid (OXA) were prepared by solvent-assisted grinding (SG) and neat powder grinding (NG) methods at the AZE/OXA molar ratios of 2:1, 1:1, and 1:2. The effect of the different polymorphs of AZE on the micro-structure of the complexes were investigated by powder X-ray diffraction (PXRD), tempreture modulated differential scanning calorimetry and thermogravimetric analysis, cryo-field emission scanning electron microscope system, fourier transform infrared (FTIR), and solid-state nuclear magnetic resonance spectroscopy...
February 4, 2017: Journal of Pharmaceutical and Biomedical Analysis
Bishweshwar Pant, Mira Park, Joong Hee Lee, Hak-Yong Kim, Soo-Jin Park
Development of photocatalytic materials with magnetic and antibacterial properties is highly desirable in wastewater treatment. In this study, a novel magnetically separable silver-iron oxide nanoparticles (Ag-Fe3O4 NPs) decorated graphitic carbon nitride (g-C3N4) nanocomposite via hydrothermal treatment has been presented for the multifaceted applications. The physiochemical properties of the as-synthesized ternary nanocomposite were characterized by the field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) studies...
February 10, 2017: Journal of Colloid and Interface Science
Manzar Ashtari, Elena S Nikonova, Kathleen A Marshall, Gloria J Young, Puya Aravand, Wei Pan, Gui-Shuang Ying, Aimee E Willett, Mani Mahmoudian, Albert M Maguire, Jean Bennett
PURPOSE: Gene therapy (GT) has offered immense hope to individuals who are visually impaired because of RPE65 mutations. Although GT has shown great success in clinical trials enrolling these individuals, evidence for stability and durability of this treatment over time is still unknown. Herein we explored the value of functional magnetic resonance imaging (fMRI) as an objective measure to assess independently the longevity of retinal GT. DESIGN: Individuals with RPE65 mutations who underwent GT in their worse-seeing eye in a phase 1 clinical trial received a second subretinal injection in their contralateral eye in a follow-on clinical trial...
February 22, 2017: Ophthalmology
Shuo Wang, Dandan Zheng, Chi Zhang, Rongtao Ma, Nathan R Bennion, Yu Lei, Xiaofeng Zhu, Charles A Enke, Sumin Zhou
Mounting evidence suggests that radiation-induced damage to the hippocampus plays a role in neurocognitive decline for patients receiving whole-brain radiotherapy (WBRT). Hippocampal avoidance whole-brain radiotherapy (HA-WBRT) has been proposed to reduce the putative neurocognitive deficits by limiting the dose to the hippocampus. However, urgency of palliation for patients as well as the complexities of the treatment planning may be barriers to protocol enrollment to accumulate further clinical evidence. This warrants expedited quality planning of HA-WBRT...
April 2017: Medical Dosimetry: Official Journal of the American Association of Medical Dosimetrists
Ornella Milanesi, Giovanni Stellin, Pietro Zucchetta
Accurate cardiovascular imaging is essential for the successful management of patients with congenital heart disease (CHD). Echocardiography and angiography have been for long time the most important imaging modalities in pediatric cardiology, but nuclear medicine has contributed in many situations to the comprehension of physiological consequences of CHD, quantifying pulmonary blood flow symmetry or right-to-left shunting. In recent times, remarkable improvements in imaging equipments, particularly in multidetector computed tomography and magnetic resonance imaging, have led to the progressive integration of high resolution modalities in the clinical workup of children affected by CHD, reducing the role of diagnostic angiography...
March 2017: Seminars in Nuclear Medicine
Xinqiang Yan, John C Gore, William A Grissom
RF arrays with a large number of independent coil elements are advantageous for parallel transmission (pTx) and reception at high fields. One of the main challenges in designing RF arrays is to minimize the electromagnetic (EM) coupling between the coil elements. The induced current elimination (ICE) method, which uses additional resonator elements to cancel coils' mutual EM coupling, has proven to be a simple and efficient solution for decoupling microstrip, L/C loop, monopole and dipole arrays. However, in previous embodiments of conventional ICE decoupling, the decoupling elements acted as "magnetic-walls" with low transmit fields and consequently low MR signal near them...
February 16, 2017: Journal of Magnetic Resonance
Mark K Borsody, Andrea Garcia, Dawn M Bielawski, Chisa Yamada, Emilio Sacristan
PURPOSE: As part of our efforts to develop a non-invasive facial nerve stimulator as an emergency treatment for ischemic stroke, we considered possible safety consequences if the technology was misapplied to stroke mimics, e.g., seizure. We hypothesized that magnetic facial nerve stimulation would worsen epileptiform activity in two animal models of active seizures. The rat intraperitoneal kainate model and pig intracortical penicillin model were employed. Magnetic facial nerve stimulation was delivered unilaterally at a variety of stimulation parameters, and the effect on ictal epileptiform activity measured by electroencephalography was determined according to an established categorical scale...
February 9, 2017: Epilepsy Research
Wilfredo González, Cécile Peucelle, Yolanda Prezado
PURPOSE: Charged particles have several advantages over x-rays radiations, both in terms of physics and radiobiology. The combination of these advantages with those of minibeam radiation therapy (MBRT) could help enhancing the therapeutic index for some cancers with poor prognosis. Among the different ions explored for therapy, carbon ions are considered to provide the optimum physical and biological characteristics. Oxygen could be advantageous due to a reduced oxygen enhancement ratio along with a still moderate biological entrance dose...
February 25, 2017: Medical Physics
Marta Parazzini, Serena Fiocchi, Emma Chiaramello, Yiftach Roth, Abraham Zangen, Paolo Ravazzani
Literature studies showed the ability to treat neuropsychiatric disorders using H1 coil, developed for the deep Transcranial Magnetic Stimulation (dTMS). Despite the positive results of the clinical studies, the electric field (E) distributions inside the brain induced by this coil when it is positioned on the scalp according to the clinical studies themselves are not yet precisely estimated. This study aims to characterize the E distributions due to the H1 coil in the brain of two realistic human models by computational electromagnetic techniques and to compare them with the ones due to the figure-of-8 coil, traditionally used in TMS and positioned as such to simulate the clinical experiments...
February 21, 2017: Medical Engineering & Physics
Carlo Masciocchi, Francesco Arrigoni, Fabiana Ferrari, Aldo Victor Giordano, Sonia Iafrate, Ilaria Capretti, Ester Cannizzaro, Alfonso Reginelli, Anna Maria Ierardi, Chiara Floridi, Alessio Salvatore Angileri, Luca Brunese, Antonio Barile
Uterine fibroids are common benign tumors of unclear etiopathology that affect the female reproductive tract. They are responsible for considerable morbidity and deterioration of life quality, and may have a negative impact on the reproductive system as well. Besides surgery aided by uterus-saving techniques, several minimally invasive procedures are now available within the field of interventional radiology that represent a valid solution for women who desire pregnancy and relief from disease-specific symptomatology...
April 2017: Medical Oncology
Talitha C Ford, Will Woods, David P Crewther
The auditory mismatch negativity (MMN), a preattentive processing potential, and its magnetic counterpart (MMF) are consistently reported as reduced in schizophrenia and autism spectrum disorders. This study investigates whether MMF characteristics differ between subclinically high and low scorers on the recently discovered shared autism and schizophrenia phenotype, Social Disorganisation. A total of 18 low (10 female) and 19 high (9 female) Social Disorganisation scorers underwent magnetoencephalography (MEG) during a MMF paradigm of 50ms standard (1000Hz, 85%) and 100ms duration deviant tones...
February 21, 2017: International Journal of Psychophysiology
Tetiana Tatarchuk, Mohamed Bououdina, Wojciech Macyk, Olexander Shyichuk, Natalia Paliychuk, Ivan Yaremiy, Basma Al-Najar, Michał Pacia
The effect of Zn-doping in CoFe2O4 nanoparticles (NPs) through chemical co-precipitation route was investigated in term of structural, optical, and magnetic properties. Both XRD and FTIR analyses confirm the formation of cubic spinel phase, where the crystallite size changes with Zn content from 46 to 77 nm. The Scherrer method, Williamson-Hall (W-H) analysis, and size-strain plot method (SSPM) were used to study of crystallite sizes. The TEM results were in good agreement with the results of the SSP method...
December 2017: Nanoscale Research Letters
Yining Hou, Jifeng Liu, Min Hong, Xia Li, Yanhua Ma, Qiaoli Yue, Chen-Zhong Li
The design of molecular nanodevices attracted great interest in these years. Herein, a reusable, sensitive and specific aptasensor was constructed based on an extension-contraction movement of DNA interconversion for the application of human thrombin detection. The present biosensor was based on resonance light scattering (RLS) using magnetic nanoparticles (MNPs) as the RLS probe. MNPs coated with streptavidin can combine with biotin labeled thrombin aptamers. The combined nanoparticles composite is monodispersed in aqueous medium...
February 20, 2017: Biosensors & Bioelectronics
Tasawar Hayat, Arsalan Aziz, Taseer Muhammad, Ahmed Alsaedi
Here magnetohydrodynamic (MHD) boundary layer flow of Jeffrey nanofluid by a nonlinear stretching surface is addressed. Heat generation/absorption and convective surface condition effects are considered. Novel features of Brownian motion and thermophoresis are present. A non-uniform applied magnetic field is employed. Boundary layer and small magnetic Reynolds number assumptions are employed in the formulation. A newly developed condition with zero nanoparticles mass flux is imposed. The resulting nonlinear systems are solved...
2017: PloS One
Kaixuan Zhang, Lin Li, Hui Li, Qiyuan Feng, Nan Zhang, Long Cheng, Xiaodong Fan, Yubin Hou, Qingyou Lu, Zhenyu Zhang, Changgan Zeng
One-dimensional (1D) confinement has been revealed to effectively tune the properties of materials in homogeneous states. The 1D physics can be further enriched by electronic inhomogeneity, which unfortunately remains largely unknown. Here we demonstrate the ultra-high sensitivity to magnetic fluctuations and the tunability of phase stability in the electronic transport properties of self-assembled electronically phase-separated manganite nanowires with extreme aspect ratio. The onset of magnetic nano-droplet state, a precursor to the ferromagnetic metallic state, is unambiguously revealed, which is attributed to the small lateral size of the nanowires that is comparable to the droplet size...
February 23, 2017: Nano Letters
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"