Read by QxMD icon Read

Hydraulic fracturing

S A Clancy, F Worrall, R J Davies, J G Gluyas
Rapid growth of hydraulic fracturing for shale gas within the USA and the possibility of shale developments within Europe has created public concern about the risks of spills and leaks associated with the industry. Reports from the Texas Railroad Commission (1999 to 2015) and the Colorado Oil and Gas Commission (2009 to 2015) were used to examine spill rates from oil and gas well pads. Pollution incident records for England and road transport incident data for the UK were examined as an analogue for potential offsite spills associated with transport for a developing shale industry...
January 31, 2018: Science of the Total Environment
Adam C Mumford, Denise M Akob, J Grace Klinges, Isabelle M Cozzarelli
The development of unconventional oil and gas (UOG) resources results in production of large volumes of wastewater containing a complex mixture of hydraulic fracturing chemical additives and components from the formation. Release of these wastewaters into the environment poses potential risks that are poorly understood. Microbial communities in stream sediments form the base of the food chain, and may serve as sentinels for changes in stream health. Iron reducing organisms have been shown to play a role in the biodegradation of a wide range of organic compounds, and to evaluate their response to UOG wastewater, we enriched anaerobic microbial communities from sediments collected upstream (background) and downstream (impacted) of an UOG wastewater injection disposal facility in the presence of hydraulic fracturing fluid (HFF) additives: guar gum, ethylene glycol, and two biocides, DBNPA and Bronopol...
February 16, 2018: Applied and Environmental Microbiology
Peter A Bain, Anu Kumar
The widespread use of hydraulic fracturing (HF) in oil and gas extraction operations has led to concern over environmental risks posed by chemicals used in HF fluids. Here we employed a suite of stable luciferase reporter gene assays to investigate the potential for selected HF chemicals or geogenics to activate or antagonise nuclear receptor signalling. We screened three biocides (bronopol [BP], glutaraldehyde [GA], and tetrakis(hydroxymethyl)phosphonium sulfate [THPS]), a surfactant (2-butoxyethanol), a friction reducer (polyacrylamide), and a coal seam geogenic (o-cresol) for their potential to act as agonists or antagonists of the estrogen receptor, androgen receptor, progesterone receptor (PR), glucocorticoid receptor or peroxisome proliferator-activated receptor gamma (PPARγ)...
January 9, 2018: Chemosphere
Maria Kozłowska, Michael R Brudzinski, Paul Friberg, Robert J Skoumal, Nicholas D Baxter, Brian S Currie
Understanding the causes of human-induced earthquakes is paramount to reducing societal risk. We investigated five cases of seismicity associated with hydraulic fracturing (HF) in Ohio since 2013 that, because of their isolation from other injection activities, provide an ideal setting for studying the relations between high-pressure injection and earthquakes. Our analysis revealed two distinct groups: (i) deeper earthquakes in the Precambrian basement, with larger magnitudes (M > 2), b-values < 1, and many post-shut-in earthquakes, versus (ii) shallower earthquakes in Paleozoic rocks ∼400 m below HF, with smaller magnitudes (M < 1), b-values > 1...
February 5, 2018: Proceedings of the National Academy of Sciences of the United States of America
Sarah A Sapouckey, Christopher D Kassotis, Susan C Nagel, Laura N Vandenberg
Unconventional oil and gas operations (UOG), which combine hydraulic fracturing (fracking) and directional drilling, involve the use of hundreds of chemicals including many with endocrine disrupting properties. Two previous studies examined mice exposed during early development to a 23-chemical mixture of UOG compounds (UOG-MIX) commonly used or produced in the process. Both male and female offspring exposed prenatally to one or more doses of UOG-MIX displayed alterations to endocrine organ function and serum hormone concentrations...
February 7, 2018: Endocrinology
William K Eymold, Kelley Swana, Myles T Moore, Colin J Whyte, Jennifer S Harkness, Siep Talma, Ricky Murray, Joachim B Moortgat, Jodie Miller, Avner Vengosh, Thomas H Darrah
Horizontal drilling and hydraulic fracturing have enhanced unconventional hydrocarbon recovery but raised environmental concerns related to water quality. Because most basins targeted for shale-gas development in the USA have histories of both active and legacy petroleum extraction, confusion about the hydrogeological context of naturally occurring methane in shallow aquifers overlying shales remains. The Karoo Basin, located in South Africa, provides a near-pristine setting to evaluate these processes, without a history of conventional or unconventional energy extraction...
February 6, 2018: Ground Water
Zi Ye, Valentina Prigiobbe
Hydraulic fracturing (or fracking) is a well stimulation technique used to extract resources from a low permeability formation. Currently, the most common application of fracking is for the extraction of oil and gas from shale. During the operation, a large volume of brine, rich in hazardous chemicals, is produced. Spills of brine from wells or pits might negatively impact underground water resources and, in particular, one of the major concerns is the migration of radionuclides, such as radium (Ra2+), into the shallow subsurface...
February 2, 2018: Journal of Contaminant Hydrology
Luisa Torres, Om Prakash Yadav, Eakalak Khan
Unconventional oil production in North Dakota (ND) and other states in the United States uses large amounts of water for hydraulic fracturing to stimulate oil flow. Most of the water used returns to the surface as produced water (PW) containing different constituents. Some of these contents are total dissolved solids and radionuclides. The most predominant radionuclide in PW is radium-226 (Ra-226) of which level depends on several factors including the content of certain cations. A multivariate regression model was developed to predict Ra-226 in PW from the Bakken Shale based on the levels of barium, strontium, and calcium...
January 20, 2018: Science of the Total Environment
Charles E Schaefer, David R Lippincott, Harald Klammler, Kirk Hatfield
An in situ field demonstration was performed in fractured rock impacted with trichloroethene (TCE) and cis-1,2-dichloroethene (DCE) to assess the impacts of contaminant rebound after removing dissolved contaminants within hydraulically conductive fractures. Using a bedrock well pair spaced 2.4m apart, TCE and DCE were first flushed with water to create a decrease in dissolved contaminant concentrations. While hydraulically isolating the well pair from upgradient contaminant impacts, contaminant rebound then was observed between the well pair over 151days...
January 25, 2018: Journal of Contaminant Hydrology
Chitta Sai Sandeep, Kostas Senetakis
In the study we experimentally examine the influence of elastic properties and surface morphology on the inter-particle friction of natural soil grains. The experiments are conducted with a custom-built micromechanical apparatus and the database is enhanced by testing engineered-reference grains. Naturally-occurring geological materials are characterized by a wide spectrum of mechanical properties (e.g., Young's modulus) and surface morphology (e.g., roughness), whereas engineered grains have much more consistent characteristics...
January 31, 2018: Materials
Sally Entrekin, Anne Trainor, James Saiers, Lauren Patterson, Kelly Maloney, Joseph Fargione, Joseph Kiesecker, Sharon Baruch-Mordo, Katherine Konschnik, Hannah Wiseman, Jean-Philippe Nicot, Joseph N Ryan
Demand for high-volume, short duration water withdrawals could create water stress to aquatic organisms in Fayetteville Shale streams sourced for hydraulic fracturing fluids. We estimated potential water stress using permitted water withdrawal volumes and actual water withdrawals compared to monthly median, low, and high streamflows. Risk for biological stress was considered at 20% of long-term median and 10% of high- and low-flow thresholds. Future well build-out projections estimated potential for continued stress...
January 31, 2018: Environmental Science & Technology
K G Ulu Güzel, Z Kirzioğlu, S Özkorucuklu
BACKGROUND: Many in vitro studies have used dentine permeability to evaluate the efficacy of various restorative and preventative procedures. The easiest way to evaluate dentine permeability is to calculate its hydraulic conductance (Lp) using fluid filtration methods. Research has examined electronic hydraulic conductance measurement methods that give more precise and reliable results for the permeability of dentine than the classical method. To our knowledge, no study has examined the dentine permeability of carious primary teeth...
December 2017: Nigerian Journal of Clinical Practice
Yuhe He, Chenxing Sun, Yifeng Zhang, Erik J Folkerts, Jonathan W Martin, Greg G Goss
Hydraulic fracturing (HF) has emerged as a major recovery method of unconventional oil and gas reservoirs and concerns have been raised regarding the environmental impact of releases of Flowback and Produced Water (FPW) to aquatic ecosystems. To investigate potential effects of HF-FPW on fish embryo development, HF-FPW samples were collected from two different wells and the organic fractions were isolated from both aqueous and particle phases to eliminate the confounding effects of high salinity. Each organic extract was characterized by non-target analysis with HPLC-Orbitrap-MS, with targeted analysis for polycyclic aromatic hydrocarbons provided as markers of petroleum-affected water...
January 27, 2018: Environmental Science & Technology
Rosemary Wright, Richard D Muma
OBJECTIVE: Examine extent of peer-reviewed literature exploring human health effects of hydraulic fracturing (HVHF). METHODS: A scoping review methodology was used to examine peer-reviewed studies published from 2000 through 2017 that empirically examine direct health impacts of hydraulic fracturing. RESULTS: Through September 2017, only 18 studies were found published in peer-reviewed journals that met our requirements for inclusion in the review...
January 24, 2018: Journal of Occupational and Environmental Medicine
Joachim Moortgat, Franklin W Schwartz, Thomas H Darrah
Horizontal drilling and hydraulic fracturing have enabled hydrocarbon recovery from unconventional reservoirs, but led to natural gas contamination of shallow groundwaters. We describe and apply numerical models of gas-phase migration associated with leaking natural gas wells. Three leakage scenarios are simulated: (1) high-pressure natural gas pulse released into a fractured aquifer; (2) continuous slow leakage into a tilted fractured formation; and (3) continuous slow leakage into an unfractured aquifer with fluvial channels, to facilitate a generalized evaluation of natural gas transport from faulty natural gas wells...
January 23, 2018: Ground Water
R Schultz, G Atkinson, D W Eaton, Y J Gu, H Kao
A sharp increase in the frequency of earthquakes near Fox Creek, Alberta, began in December 2013 in response to hydraulic fracturing. Using a hydraulic fracturing database, we explore relationships between injection parameters and seismicity response. We show that induced earthquakes are associated with completions that used larger injection volumes (104 to 105 cubic meters) and that seismic productivity scales linearly with injection volume. Injection pressure and rate have an insignificant association with seismic response...
January 19, 2018: Science
David Santillán, Juan-Carlos Mosquera, Luis Cueto-Felgueroso
Hydraulic fracture trajectories in rocks and other materials are highly affected by spatial heterogeneity in their mechanical properties. Understanding the complexity and structure of fluid-driven fractures and their deviation from the predictions of homogenized theories is a practical problem in engineering and geoscience. We conduct a Monte Carlo simulation study to characterize the influence of heterogeneous mechanical properties on the trajectories of hydraulic fractures propagating in elastic media. We generate a large number of random fields of mechanical properties and simulate pressure-driven fracture propagation using a phase-field model...
November 2017: Physical Review. E
Jiamin Wan, Tetsu K Tokunaga, Paul D Ashby, Yongman Kim, Marco Voltolini, Benjamin Gilbert, Donald J DePaolo
Interactions between supercritical (sc) CO2 and minerals are important when CO2 is injected into geologic formations for storage and as working fluids for enhanced oil recovery, hydraulic fracturing, and geothermal energy extraction. It has previously been shown that at the elevated pressures and temperatures of the deep subsurface, scCO2 alters smectites (typical swelling phyllosilicates). However, less is known about the effects of scCO2 on nonswelling phyllosilicates (illite and muscovite), despite the fact that the latter are the dominant clay minerals in deep subsurface shales and mudstones...
January 16, 2018: Proceedings of the National Academy of Sciences of the United States of America
K Görkem Ulu Güzel, Münciye Semra Özay Ertürk, Zuhal Kırzıoğlu, Suat Özkorucuklu
OBJECTIVE: The in vitro permeability characteristics of dentin have been studied extensively and used to evaluate the efficacy of various preventative and restorative procedures. The aim of this in vitro study was to precisely determine the dentin permeability of fluorotic premolar teeth using an electronic hydraulic conductance measurement system with photosensors and to compare the data with healthy premolars. METHODS: In total, 40 fluorotic and healthy premolar teeth with complete root formation that were extracted for orthodontic purposes and had no caries, restoration, fractures, or cracks were selected for this study...
January 15, 2018: Acta Odontologica Scandinavica
Chaohua Guo, Mingzhen Wei, Hong Liu
Development of unconventional shale gas reservoirs (SGRs) has been boosted by the advancements in two key technologies: horizontal drilling and multi-stage hydraulic fracturing. A large number of multi-stage fractured horizontal wells (MsFHW) have been drilled to enhance reservoir production performance. Gas flow in SGRs is a multi-mechanism process, including: desorption, diffusion, and non-Darcy flow. The productivity of the SGRs with MsFHW is influenced by both reservoir conditions and hydraulic fracture properties...
2018: PloS One
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"