Read by QxMD icon Read


Kaixuan Ren, Haitao Cui, Qinghua Xu, Chaoliang He, Gao Li, Xuesi Chen
Bone marrow-derived mesenchymal stem cells (BMSCs) possess vast potential for tissue engineering and regenerative medicine. In this study, an injectable hydrogel comprising poly(L-glutamic acid)-graft-tyramine (PLG-g-TA) with tunable microenvironment was developed via enzyme-catalyzed crosslinking, and used as artificial extracellular matrix (ECM) to explore the behaviors of BMSCs during three dimensional (3D) culture. It was found that the mechanical property, porous structure as well as degradation process of the hydrogels could be tuned by changing the copolymer concentration...
October 24, 2016: Biomacromolecules
Xinxin Song, Yangchun Xie, Rui Kang, Wen Hou, Xiaofang Sun, Michael W Epperly, Joel S Greenberger, Daolin Tang
Bone marrow injury remains a serious concern in traditional cancer treatment. Ferroptosis is an iron- and oxidative-dependent form of regulated cell death that has become part of an emerging strategy for chemotherapy. However, the key regulator of ferroptosis in bone marrow injury remains unknown. Here, we show that Fanconi anemia complementation group D2 (FANCD2), a nuclear protein involved in DNA damage repair, protects against ferroptosis-mediated injury in bone marrow stromal cells (BMSCs). The classical ferroptosis inducer erastin remarkably increased the levels of monoubiquitinated FANCD2, which in turn limited DNA damage in BMSCs...
October 20, 2016: Biochemical and Biophysical Research Communications
Ling Zhang, Li Zheng, Hong S Fan, Xing D Zhang
This study was undertaken to explore the synergistic effect of scaffold materials and a cartilage-like environment on the chondrogenic differentiation of stem cells. Because stem cells encapsulated in a cartilage scaffold will be induced by scaffold molecules as well as permeable molecules from the surroundings, it is impossible to optimize a chondro-inducible scaffold without considering environmental sensitivity. How do we know if a designed scaffold will be sufficient prior to implantation? In this study, bone marrow mesenchymal stem cells (bMSCs) were seeded in various scaffolds, including collagen hydrogel, collage/sodium alginate hydrogel, collagen sponge and silk fibroin sponge...
January 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
Bo Li, Zhongning Liu, Jingwen Yang, Zhongchao Yi, Wenqian Xiao, Xue Liu, Xiaoling Yang, Wenfeng Xu, Xiaoling Liao
In this study, β-tricalcium phosphate (Ca3PO4, β-TCP) microspheres with different diameters were fabricated via a solid-in-oil-in-water (S/O/W) emulsion method. After soaking in simulated body fluid (SBF), the fabricated β-TCP microspheres were fully covered with a new bone-like apatite layer; subsequent analysis suggested that the microspheres have excellent bioactivity properties, specifically in inducing apatite deposition. The calcium release profiles of the microspheres were tested in pH7.4 Tris-HCl buffer, and results demonstrated that the Ca(2+) continually released from microspheres during the two-week test period...
January 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
Qian Zhang, Zhen-Wei Chen, Yong-Hua Zhao, Bo-Wen Liu, Nai-Wei Liu, Chien-Chih Ke, Hong-Mei Tan
Being a potential candidate for stroke treatment, bone marrow stromal cells (BMSCs) have been demonstrated to be able to enhance angiogenesis and proliferation of reactive astrocytes which subsequently lead to the amelioration of neurological injury. Increasing evidences further indicate combined BMSCs with certain agent such as simvastatin may have improved therapeutic effect. Sodium Ferulate (SF) and n-butylidenephthalide (BP), two main components of Radix Angelica Sinensis, are proved to be the important regulators of stem cells in cell migration, differentiation and pluripotency maintenance...
October 21, 2016: Cell Transplantation
Shang-Chun Guo, Shi-Cong Tao, Wen-Jing Yin, Xin Qi, Jia-Gen Sheng, Chang-Qing Zhang
Osteonecrosis of the femoral head (ONFH) represents a debilitating complication following glucocorticoid (GC)-based therapy. Synovial-derived mesenchymal stem cells (SMSCs) can exert protective effect in the animal model of GC-induced ONFH by inducing cell proliferation and preventing cell apoptosis. Recent studies indicate the transplanted cells exert therapeutic effects primarily via a paracrine mechanism and exosomes are an important paracrine factor that can be directly used as therapeutic agents for tissue engineering...
2016: International Journal of Biological Sciences
Xiang He, Ling Jiang, Qi-Qin Dan, Qiang Lv, Yue Hu, Jia Liu, Ting-Hua Wang, Shu-Fen Wang
Collapsin response mediator protein 2 (CRMP2), an important protein involved in axonal growth and the maintenance of neuronal membrane integrity, has proved to be altered in nervous system diseases. This study was aimed to investigate the role of CRMP2 in bone marrow stromal cells (BMSCs) treating rats with cerebral ischemia. BMSCs were isolated from shaft of the femurs, tibiae, and humeri and was intra-carotid administrated immediately after middle cerebral artery occlusion (MCAO). Modified Neurological Severity Scores (mNSS) was conducted at 3, 7, 14 dpo and the electrophysiologic evaluation was evaluated at 14 dpo...
October 17, 2016: Behavioural Brain Research
Kai Li, Jiangming Yu, Youtao Xie, Mingyu You, Liping Huang, Xuebin Zheng
Ideal coatings for orthopedic implants should be able to induce excellent osseointegration with host bone tissue, which requires good osteogenic responses and limited inflammatory reactions. Cerium oxide (CeO2) ceramics have anti-oxidative properties and can be used to decrease mediators of inflammation, making them attractive for biomedical application. In this study, two kinds of CeO2 incorporated calcium silicate coatings (CS-10Ce and CS-30Ce) were prepared via plasma spraying technique, and the effects of CeO2 addition on the responses of bone mesenchymal stem cells (BMSCs) and RAW264...
October 20, 2016: Biological Trace Element Research
Sakineh Haydari, Manouchehr Safari, Sam Zarbakhsh, Ahmad Reza Bandegi, Hossein Miladi-Gorji
This study was designed to investigate whether free access to a running wheel during pregnancy in morphine-dependent mothers would influence the viability, proliferation and BDNF levels of bone marrow stromal cells in rat pups. Pregnant rats were made dependent by chronic administration of morphine in drinking water simultaneously with free access to a running wheel. Male pups are weaned at 21days of birth and their bones marrows were aspirated from the femurs and tibias and also the bone marrow stromal cells (BMSCs) cultured...
October 13, 2016: Neuroscience Letters
Xinjian Mao, Zhe Chen, Qing Luo, Bingyu Zhang, Guanbin Song
Exposure to microgravity during space flight affects almost all human physiological systems. Migration, proliferation, and differentiation of stem cells are crucial for tissues repair and regeneration. However, the effect of microgravity on the migration potentials of bone marrow mesenchymal stem cells (BMSCs) is unclear, which are important progenitor and supporting cells. Here, we utilized a clinostat to model simulated microgravity (SMG) and found that SMG obviously inhibited migration of rat BMSCs. We detected significant reorganization of F-actin filaments and increased Young's modulus of BMSCs after exposure to SMG...
October 15, 2016: Cytotechnology
Zi-Chao Zhou, Lei Che, Liang Kong, De-Lin Lei, Rui Liu, Xin-Jie Yang
OBJECTIVE: This study investigated the effects and possible molecular mechanism of casein kinase-2 interacting protein-1 (CKIP-1) silencing on bone regeneration during rat mandibular distraction osteogenesis (DO). STUDY DESIGN: CKIP-1 silencing by chitosan/si-CKIP-1 was employed and analyzed both in rat mandibular DO models in vivo and in cultured rat mandible bone marrow stromal cells (BMSCs) in vitro. RESULTS: Gross observation, micro-computed tomography analysis, and hematoxylin and eosin (H&E) staining revealed that new bone formation in the distraction gap of the chitosan/si-CKIP-treated group was better compared with the chitosan/si-NC and phosphate buffered saline-treated groups in both quantity and quality...
July 30, 2016: Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology
Murong You, Juehua Jing, Dasheng Tian, Jun Qian, Guangrong Yu
Dioscin has been shown to play important roles in suppression of osteoclast maturation. It is proposed as a potential natural product for the treatment of osteoclast-related diseases. We hypothesized in this study that treatment of dioscin on bone marrow mesenchymal stem cells (BMSCs) could increase the osteo-chondrogenic differentiation of BMSCs and promote endochondral ossification of BMSCs in bone fracture environment. BMSCs were extracted from femur and tibia of male C57b mice. Stemness of BMSCs was studied by performing proliferation assay and multilineage differentiation...
2016: American Journal of Translational Research
Xiangwei Liu, Naiwen Tan, Yuchao Zhou, Xueying Zhou, Hui Chen, Hongbo Wei, Ji Chen, Xiaoru Xu, Sijia Zhang, Guodong Yang, Yingliang Song
Adipose mesenchymal stem cells (ASCs) are considered as the promising seed cells for bone regeneration. However, the lower osteogenic differentiation capacity limits its therapeutic efficacy. Identification of the key molecules governing the differences between ASCs and BMSCs would shed light on manipulation of ASCs towards osteogenic phenotype. In this study, we screened semaphorin family members in ASCs and BMSCs and identified Sema3A as an osteogenic semaphorin that was significantly and predominantly expressed in BMSCs...
2016: Stem Cells International
Tianlin Liu, Xin Zhang, Yuan Luo, Yuanliang Huang, Gang Wu
Bone tissue engineering technique is a promising strategy to repair large-volume bone defects. In this study, we developed a 3-dimensional construct by combining icariin (a small-molecule Chinese medicine), allogeneic bone marrow-derived mesenchymal stem cells (BMSCs), and a siliceous mesostructured cellular foams-poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (SMC-PHBHHx) composite scaffold. We hypothesized that the slowly released icariin could significantly promote the efficacy of SMC-PHBHHx/allogeneic BMSCs for repairing critical-size bone defects in rats...
2016: Stem Cells International
Peizhou Jiang, Peng Huang, Shu-Hui Yen, Abba C Zubair, Dennis W Dickson
BACKGROUND AIMS: Aberrant production of reactive oxygen species (ROS) and its impact on the integrity of genomic DNA have been considered one of the major risk factors for the loss of dopaminergic neurons in Parkinson's disease (PD). Stem cell transplantation as a strategy to replenish new functional neurons has great potential for PD treatment. However, limited survival of stem cells post-transplantation has always been an obstacle ascribed to the existence of neurotoxic environment in PD patients...
October 6, 2016: Cytotherapy
Xiaoguang Li, Na Liu, Yizhu Wang, Jinglong Liu, Haigang Shi, Zhenzhen Qu, Tingting Du, Bin Guo, Bin Gu
Type 2 diabetes mellitus (T2DM) is associated with inhibited osteogenesis of bone marrow mesenchymal stem cells (BMSCs). Brain and muscle ARNT-like protein 1 (BMAL1) has been linked to the T2DM-related bone remodeling, however, the specific mechanism is still unclear. Herein, we aimed to determine the role of BMAL1 in T2DM-induced suppression of BMSCs osteogenesis. Inhibited osteogenesis and BMAL1 expression were showed in diabetic BMSCs. And while β-catenin and T cell factor (TCF) expression were decreased, the glycogen synthase kinase-3β (GSK-3β) and nemo-like kinase (NLK) expression were increased in diabetic BMSCs...
October 4, 2016: Molecular and Cellular Endocrinology
Kwan-Long Mung, Yat-Ping Tsui, Evelyn Wing-Yin Tai, Ying-Shing Chan, Daisy Kwok-Yan Shum, Graham Ka-Hon Shea
BACKGROUND: Bone marrow stromal cells (BMSCs) are attractive as a source of neural progenitors for ex vivo generation of neurons and glia. Limited numbers of this subpopulation, however, hinder translation into autologous cell-based therapy. Here, we demonstrate rapid and efficient conditioning with hypoxia to enrich for these neural progenitor cells prior to further expansion in neurosphere culture. METHOD: Adherent cultures of BMSCs (rat/human) were subjected to 1 % oxygen for 24 h and then subcultured as neurospheres with epidermal growth factor (EGF) and basic fibroblast growth factor supplementation...
October 7, 2016: Stem Cell Research & Therapy
Meng Wang, Yuanman Yu, Kai Dai, Zhengyu Ma, Yang Liu, Jing Wang, Changsheng Liu
Immune responses are vital for bone regeneration and play an essential role in the fate of biomaterials after implantation. As a kind of plastic cell, macrophages are central regulators of the immune response during the infection and wound healing process including osteogenesis and angiogenesis. Magnesium-calcium phosphate cement (MCPC) has been reported as a promising candidate for bone repair with promoted osteogenesis both in vitro and in vivo. However, relatively little is known about the effects of MCPC on immune response and the following outcome...
October 18, 2016: Biomaterials Science
Keerthi Atluri, Joun Lee, Denise Seabold, Satheesh Elangovan, Aliasger K Salem
PURPOSE: Commercially pure titanium (CpTi) and its alloys possess favorable mechanical and biologic properties for use as implants in orthopedics and dentistry. However, failures in osseointegration still exist and are common in select individuals with risk factors such as smoking. Therefore, in this study, a proposal was made to enhance the potential for osseointegration of CpTi discs by coating their surfaces with nanoplexes comprising polyethylenimine (PEI) and plasmid DNA (pDNA) encoding bone morphogenetic protein-2 (pBMP-2)...
October 5, 2016: International Journal of Oral & Maxillofacial Implants
Mingyu Zhang, Yue Du, Renzhong Lu, You Shu, Wei Zhao, Zhuoyun Li, Yu Zhang, Ruixue Liu, Ti Yang, Shenjian Luo, Ming Gao, Yue Zhang, Guiye Zhang, Jiaqi Liu, Yanjie Lu
In the present study, we demonstrated that bone marrow mesenchymal stem cells (BMSCs) of the 3rd passage displayed the senescence-associated phenotypes characterized with increased activity of SA-β-gal, altered autophagy, and increased G1 cell cycle arrest, ROS production, and expression of p53 and p21(Cip1/Waf1) compared with BMSCs of the 1st passage. Cholesterol (CH) reduced the number of SA-β-gal positive cells in a dose-dependent manner in aging BMSCs induced by H2O2 and the 3rd passage BMSCs. Moreover, CH inhibited the production of ROS and expression of p53 and p21(Cip1/Waf1) in both cellular senescence models and decreased the percentage of BMSCs in G1 cell cycle in the 3rd passage BMSCs...
2016: Oxidative Medicine and Cellular Longevity
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"