Read by QxMD icon Read


Teresa Delgado-Goni, Maria Falck Miniotis, Slawomir Wantuch, Harold G Parkes, Richard Marais, Paul Workman, Martin O Leach, Mounia Beloueche-Babari
Understanding the impact of BRAF signaling inhibition in human melanoma on key disease mechanisms is important for developing biomarkers of therapeutic response and combination strategies to improve long term disease control. This work investigates the downstream metabolic consequences of BRAF inhibition with vemurafenib, the molecular and biochemical processes that underpin them, their significance for antineoplastic activity and potential as non-invasive imaging response biomarkers.(1)H NMR spectroscopy showed that vemurafenib decreases the glycolytic activity of BRAF mutant (WM266...
October 7, 2016: Molecular Cancer Therapeutics
Xianxiu Wan, Jian-Jun Wen, Sue-Jie Koo, Lisa Yi Liang, Nisha Jain Garg
Chronic chagasic cardiomyopathy (CCM) is presented by increased oxidative/inflammatory stress and decreased mitochondrial bioenergetics. SIRT1 senses the redox changes and integrates mitochondrial metabolism and inflammation; and SIRT1 deficiency may be a major determinant in CCM. To test this, C57BL/6 mice were infected with Trypanosoma cruzi (Tc), treated with SIRT1 agonists (resveratrol or SRT1720), and monitored during chronic phase (~150 days post-infection). Resveratrol treatment was partially beneficial in controlling the pathologic processes in Chagas disease...
October 2016: PLoS Pathogens
Jianyin Long, Shawn S Badal, Zengchun Ye, Yin Wang, Bernard A Ayanga, Daniel L Galvan, Nathanael H Green, Benny H Chang, Paul A Overbeek, Farhad R Danesh
The regulatory roles of long noncoding RNAs (lncRNAs) in transcriptional coactivators are still largely unknown. Here, we have shown that the peroxisome proliferator-activated receptor γ (PPARγ) coactivator α (PGC-1α, encoded by Ppargc1a) is functionally regulated by the lncRNA taurine-upregulated gene 1 (Tug1). Further, we have described a role for Tug1 in the regulation of mitochondrial function in podocytes. Using a murine model of diabetic nephropathy (DN), we performed an unbiased RNA-sequencing (RNA-seq) analysis of kidney glomeruli and identified Tug1 as a differentially expressed lncRNA in the diabetic milieu...
October 17, 2016: Journal of Clinical Investigation
Yiwei Wang, Roberta D Brinton
Brain is the most energetically demanding organ of the body, and is thus vulnerable to even modest decline in ATP generation. Multiple neurodegenerative diseases are associated with decline in mitochondrial function, e.g., Alzheimer's, Parkinson's, multiple sclerosis and multiple neuropathies. Genetic variances in the mitochondrial genome can modify bioenergetic and respiratory phenotypes, at both the cellular and system biology levels. Mitochondrial haplotype can be a key driver of mitochondrial efficiency...
2016: Frontiers in Aging Neuroscience
Sofia Lisanti, David S Garlick, Kelly G Bryant, Michele Tavecchio, Gordon B Mills, Yiling Lu, Andrew V Kossenkov, Louise C Showe, Lucia R Languino, Dario C Altieri
Protein homeostasis, or proteostasis is required for mitochondrial function, but its role in cancer is controversial. Here, we show that transgenic mice expressing the mitochondrial chaperone, TRAP1 in the prostate develop epithelial hyperplasia and cellular atypia. When examined on a Pten+/- background, a common alteration in human prostate cancer, TRAP1 transgenic mice showed accelerated incidence of invasive prostatic adenocarcinoma, characterized by increased cell proliferation and reduced apoptosis, in situ...
October 17, 2016: Journal of Biological Chemistry
MyungHee Ku, Yong-Un Baek, Min-Kyu Kwak, Sa-Ouk Kang
BACKGROUND: Glutathione reductase maintains the glutathione level in a reduced state. As previously demonstrated, glutathione is required for cell growth/division and its biosynthesizing-enzyme deficiency causes methylglyoxal accumulation. However, experimental evidences for reciprocal relationships between Cph1-/Efg1-mediated signaling pathway regulation and methylglyoxal production exerted by glutathione reductase on yeast morphology remain unclear. METHODS: Glutathione reductase (GLR1) disruption/overexpression were performed to investigate aspects of pathological/morphological alterations in Candida albicans...
October 15, 2016: Biochimica et Biophysica Acta
Leonor Rodríguez-Sánchez, Eduardo Rial
The uncoupling protein UCP1 from brown adipose tissue is a mitochondrial carrier which allows dissipation of metabolic energy as heat. We have characterized the human UCP1 (HsUCP1) recombinantly expressed in Saccharomyces cerevisiae and we demonstrate that HsUCP1 is activated by fatty acids and retinoids in a nucleotide sensitive manner just as its rodent orthologs. However, in the absence of regulators, rodent UCP1 presents a high ohmic proton conductance that cannot be detected in HsUCP1. Since the human protein can be activated in a nucleotide sensitive manner, we conclude that it must have lost selectively the basal proton conductance...
October 14, 2016: Biochimie
A Cacace, M Sboarina, T Vazeille, P Sonveaux
Cancer cells can use a variety of metabolic substrates to fulfill the bioenergetic and biosynthetic needs of their oncogenic program. Besides bioenergetics, cancer cell metabolism also directly influences genetic, epigenetic and signaling events associated with tumor progression. Many cancer cells are addicted to glutamine, and this addiction is observed in oxidative as well as in glycolytic cells. Although both oxidative and bioreductive glutamine metabolism can contribute to cancer progression and glutamine can further serve to generate peptides (including glutathione) and proteins, we report that glutamine promotes the proliferation of cancer cells independently of its use as a metabolic fuel or as a precursor of glutathione...
October 17, 2016: Oncogene
Stephanie Cham, Hayley J Koslik, Beatrice A Golomb
Psychiatric adverse drug reactions (ADRs) have been reported with statin use, but the literature regarding statin-associated mood/behavioral changes remains limited. We sought to elicit information germane to natural history and characteristics of central nervous system/behavioral changes in apparent connection with statin and/or cholesterol-lowering drug use, and delineate mechanisms that may bear on an association. Participants (and/or proxies) self-referred with behavioral and/or mood changes in apparent association with statins completed a survey eliciting cholesterol-lowering drug history, character and impact of behavioral/mood effect, time-course of onset and recovery in relation to drug use/modification, co-occurrence of recognized statin-associated ADRs, and factors relevant to ADR causality determination...
December 2016: Drug Saf Case Rep
Marthe H R Ludtmann, Plamena R Angelova, Natalia N Ninkina, Sonia Gandhi, Vladimir L Buchman, Andrey Y Abramov
: Misfolded α-synuclein is a key factor in the pathogenesis of Parkinson's disease (PD). However, knowledge about a physiological role for the native, unfolded α-synuclein is limited. Using brains of mice lacking α-, β-, and γ-synuclein, we report that extracellular monomeric α-synuclein enters neurons and localizes to mitochondria, interacts with ATP synthase subunit α, and modulates ATP synthase function. Using a combination of biochemical, live-cell imaging and mitochondrial respiration analysis, we found that brain mitochondria of α-, β-, and γ-synuclein knock-out mice are uncoupled, as characterized by increased mitochondrial respiration and reduced mitochondrial membrane potential...
October 12, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Nathaniel B Bone, Zhongyu Liu, Jean-Francois Pittet, Jaroslaw W Zmijewski
Catecholamines, including β-adrenergic and dopaminergic neurotransmitters, have an essential role in regulating the "fight or flight" reflex and also affects immune cell proinflammatory action. However, little is known about whether catecholamines prevent dysfunction of metabolic pathways associated with inflammatory organ injury, including development of acute lung injury (ALI). We hypothesize that selected catecholamines may reduce metabolic alterations in LPS-stimulated macrophages and in the lungs of mice subjected to endotoxin-induced ALI, a situation characterized by diminished activity of AMP-activated protein kinase (AMPK)...
October 12, 2016: Journal of Leukocyte Biology
Jonathan B Armstrong, Eric J Ward, Daniel E Schindler, Peter J Lisi
As climate change increases maximal water temperatures, behavioural thermoregulation may be crucial for the persistence of coldwater fishes, such as salmonids. Although myriad studies have documented behavioural thermoregulation in southern populations of salmonids, few if any have explored this phenomenon in northern populations, which are less likely to have an evolutionary history of heat stress, yet are predicted to experience substantial warming. Here, we treated a rare heat wave as a natural experiment to test whether wild sockeye salmon (Oncorhynchus nerka) at the northern extent of their primary range (60° latitude) can thermoregulate in response to abnormally high thermal conditions...
2016: Conservation Physiology
Abderrahim Naji, Narufumi Suganuma, Nicolas Espagnolle, Ken-Ichi Yagyu, Nobuyasu Baba, Luc Sensebé, Frédéric Deschaseaux
: : Mesenchymal stem (stromal) cells (MSCs) are being investigated for treating degenerative and inflammatory disorders because of their reparative and immunomodulatory properties. Intricate mechanisms relate cell death processes with immune responses, which have implications for degenerative and inflammatory conditions. We review the therapeutic value of MSCs in terms of preventing regulated cell death (RCD). When cells identify an insult, specific intracellular pathways are elicited for execution of RCD processes, such as apoptosis, necroptosis, and pyroptosis...
October 11, 2016: Stem Cells Translational Medicine
Adam J Case, Colton T Roessner, Jun Tian, Matthew C Zimmerman
Norepinephrine (NE) produces multifaceted regulatory patterns in T-lymphocytes. Recently, we have shown that NE utilizes redox signaling as evidenced by increased superoxide (O2●-) causally linked to the observed changes in these cells; however, the source of this reactive oxygen species (ROS) remains elusive. Herein, we hypothesized that the source of increased O2●- in NE-stimulated T-lymphocytes is due to disruption of mitochondrial bioenergetics. To address this hypothesis, we utilized purified mouse splenic CD4+ and CD8+ T-lymphocytes stimulated with NE and assessed O2●- levels, mitochondrial metabolism, cellular proliferation, and cytokine profiles...
2016: PloS One
Isabel López-García, Domokos Gerő, Bartosz Szczesny, Petra Szoleczky, Gabor Olah, Katalin Módis, Kangling Zhang, Gao Jungling, Ping Wu, Lawrence C Sowers, Doug DeWitt, Donald S Prough, Csaba Szabo
BACKGROUND AND PURPOSE: We hypothesized that an in vitro, stretch-based model of neural injury may be useful to identify compounds that decrease the cellular damage in neurotrauma. EXPERIMENTAL APPROACH: We screened three neural cell lines (B35, RN33B, SH-SY5Y) subjected to two differentiation methods and selected all-trans-retinoic acid-differentiated B35 rat neuroblastoma cells subjected to rapid stretch injury, coupled with a subthreshold concentration of H2 O2 , for the screen...
October 9, 2016: British Journal of Pharmacology
Claudia B Catarino, Uwe Ahting, Mirjana Gusic, Arcangela Iuso, Birgit Repp, Katrin Peters, Saskia Biskup, Bettina von Livonius, Holger Prokisch, Thomas Klopstock
Leber's hereditary optic neuropathy (LHON) is an inherited mitochondrial disease that usually leads to acute or subacute bilateral central vision loss. In 95% of cases, LHON is caused by one of three primary mutations of the mitochondrial DNA (mtDNA), m.11778G>A in the MT-ND4 gene, m.14484T>C in the MT-ND6 gene, or m.3460G>A in the MT-ND1 gene. Here we characterize clinically, genetically, and biochemically a LHON family with multiple patients harboring two of these primary LHON mutations, m.11778G>A homoplasmic and m...
October 6, 2016: Mitochondrion
Tomoyo Sakata-Kato, Dyann F Wirth
Given that resistance to all drugs in clinical use has arisen, discovery of new anti-malarial drug targets is eagerly anticipated. The Plasmodium mitochondrion has been considered a promising drug target largely based on its significant divergence from the host organelle as well as its involvement in ATP production and pyrimidine biosynthesis. However, the functions of Plasmodium mitochondrial protein complexes and associated metabolic pathways are not fully characterized. Here, we report the development of novel and robust bioenergetic assay protocols for Plasmodium falciparum asexual parasites utilizing a Seahorse Bioscience XFe24 Extracellular Flux Analyzer...
October 9, 2016: ACS Infectious Diseases
Lauren E Jamieson, Victoria L Camus, Pierre O Bagnaninchi, Kate M Fisher, Grant D Stewart, William H Nailon, Duncan B McLaren, David J Harrison, Colin J Campbell
Use of multicellular tumor spheroids (MTS) to investigate therapies has gained impetus because they have potential to mimic factors including zonation, hypoxia and drug-resistance. However, analysis remains difficult and often destroys 3D integrity. Here we report an optical technique using targeted nanosensors that allows in situ 3D mapping of redox potential gradients whilst retaining MTS morphology and function. The magnitude of the redox potential gradient can be quantified as a free energy difference (ΔG) and used as a measurement of MTS viability...
September 22, 2016: Nanoscale
Prashanth Komirishetty, Aparna Areti, Ranadeep Gogoi, Ramakrishna Sistla, Ashutosh Kumar
Neuropathic pain, a debilitating pain condition and the underlying pathogenic mechanisms are complex and interwoven amongst each other and still there is scant information available regarding therapies which promise to treat the condition. Evidence indicate that oxidative/nitrosative stress induced poly (ADP-ribose) polymerase (PARP) overactivation initiate neuroinflammation and bioenergetic crisis culminating into neurodegenerative changes following nerve injury. Hence, we investigated the therapeutic effect of combining an antioxidant, quercetin and a PARP inhibitor, 4-amino 1, 8-naphthalimide (4-ANI) on the hallmark deficits induced by chronic constriction injury (CCI) of sciatic nerve in rats...
October 3, 2016: Neuropharmacology
Anna Czajka, Afshan N Malik
Damage to renal tubular and mesangial cells is central to the development of diabetic nephropathy (DN), a complication of diabetes which can lead to renal failure. Mitochondria are the site of cellular respiration and produce energy in the form of ATP via oxidative phosphorylation, and mitochondrial dysfunction has been implicated in DN. Since the kidney is an organ with high bioenergetic needs, we postulated that hyperglycemia causes damage to renal mitochondria resulting in bioenergetic deficit. The bioenergetic profiles and the effect of hyperglycemia on cellular respiration of human primary mesangial (HMCs) and proximal tubular cells (HK-2) were compared in normoglycemic and hyperglycemic conditions using the seahorse bio-analyzer...
September 17, 2016: Redox Biology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"