Read by QxMD icon Read


Aurel Popa-Wagner, Raluca E Sandu, Coman Cristin, Adriana Uzoni, Kevin A Welle, Jennifer R Hryhorenko, Sina Ghaemmaghami
Brain structures differ in the magnitude of age-related neuron loss with the cerebellum being more affected. An underlying cause could be an age-related decline in mitochondrial bioenergetics. Successful aging of mitochondria reflects a balanced turnover of proteins involved in mitochondrial biogenesis and mitophagy. Thus, an imbalance in mitochondrial turnover can contribute to the diminution of cellular function seen during aging. Mitochondrial biogenesis and mitophagy are mediated by a set of proteins including MFN1, MFN2, OPA1, DRP1, FIS1 as well as DMN1l and DNM1, all of which are required for mitochondrial fission...
2018: Frontiers in Aging Neuroscience
Aicha Melouane, Antoine Carbonell, Mayumi Yoshioka, Jack Puymirat, Jonny St-Amand
Secreted protein, acidic and rich in cysteine (SPARC) is differentially associated with cell proliferation and extracellular matrix (ECM) assembly. We show here the effect of exogenous SPARC inhibition/induction on ECM and mitochondrial proteins expression and on the differentiation of C2C12 cells. The cells were cultured in growth medium (GM) supplemented with different experimental conditions. The differentiation of myoblasts was studied for 5 days, the expressions of ECM and mitochondrial proteins were measured and the formation of the myotubes was quantified after exogenous induction/inhibition of SPARC...
2018: PloS One
Rashmi Seneviratne, Sanobar Khan, Ellen Moscrop, Michael Rappolt, Stephen P Muench, Lars J C Jeuken, Paul A Beales
Hybrid vesicles composed of lipids and block copolymers hold promise for increasing liposome stability and providing a stable environment for membrane proteins. Recently we reported the successful functional reconstitution of the integral membrane protein cytochrome bo3 (ubiquinol oxidase) into hybrid vesicles composed of a blend of phospholipids and a block copolymer (PBd-PEO). We demonstrated that these novel membrane environments stabilise the enzymes' activity, prolonging their functional lifetime [Chem Commun...
January 31, 2018: Methods: a Companion to Methods in Enzymology
Janet D Pierce, Raeesa Gupte, Amanda Thimmesch, Qiuhua Shen, John B Hiebert, William M Brooks, Richard L Clancy, Francisco J Diaz, Janna L Harris
Following traumatic brain injury (TBI), there is significant secondary damage to cerebral tissue from increased free radicals and impaired mitochondrial function. This imbalance between reactive oxygen species (ROS) production and the effectiveness of cellular antioxidant defenses is termed oxidative stress. Often there are insufficient antioxidants to scavenge ROS, leading to alterations in cerebral structure and function. Attenuating oxidative stress following a TBI by administering an antioxidant may decrease secondary brain injury, and currently many drugs and supplements are being investigated...
January 30, 2018: Journal of Neuroscience Research
Edina H Avdović, Dejan Milenković, Jasmina M Dimitrić Marković, Jelena Đorović, Nenad Vuković, Milena D Vukić, Verica V Jevtić, Srećko R Trifunović, Ivan Potočňák, Zoran Marković
The experimental and theoretical investigations of structure of the 3-(1-(phenylamino)ethylidene)-chroman-2,4-dione were performed. X-ray structure analysis and spectroscopic methods (FTIR and FT-Raman, 1H and 13C NMR), along with the density functional theory calculations (B3LYP functional with empirical dispersion corrections D3BJ in combination with the 6-311 + G(d,p) basis set), were used in order to characterize the molecular structure and spectroscopic behavior of the investigated coumarin derivative...
January 10, 2018: Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy
Takayuki Takahashi, Yukitoshi Mine, Tadashi Okamoto
Coenzyme Q (CoQ) is an essential factor of the mitochondrial respiratory chain. CoQ homologues with different lengths of the isoprenoid side chain are widely distributed in nature, but little is known about the relationship between the isoprenoid side chain length and biological function; therefore, we examined the effects of CoQ homologues on HeLa cells. When CoQ homologues with a shorter isoprenoid side chain than CoQ4 were added to HeLa cells, they induced cell death, and the order of cytotoxic intensity was as follows: CoQ0 ≫ CoQ3 ≈ CoQ1 > CoQ2 ≫ CoQ4...
January 8, 2018: Journal of Biochemistry
Kay D Beharry, Charles L Cai, Michael M Henry, Sara Chowdhury, Gloria B Valencia, Jacob V Aranda
Neonatal intermittent hypoxia (IH) increases the risk for many morbidities in extremely low birth weight/gestational age (ELBW/ELGA) neonates with compromised antioxidant systems and poor growth. We hypothesized that supplementation with coenzyme Q10 (CoQ10, ubiquinol) or n-3 polyunsaturated fatty acids (PUFAs) during neonatal IH improves antioxidant profiles and somatic growth in neonatal rats. Newborn rats were exposed to two IH paradigms at birth (P0): (1) 50% O₂ with brief hypoxic episodes (12% O₂); or (2) room air (RA) with brief hypoxia, until P14 during which they received daily oral CoQ10 in olive oil, n-3 PUFAs in fish oil, or olive oil only from P0 to P14...
December 16, 2017: Antioxidants (Basel, Switzerland)
Martina Lardi, Yilei Liu, Gabriela Purtschert, Samanta Bolzan de Campos, Gabriella Pessi
Paraburkholderia phymatum belongs to the β-subclass of proteobacteria. It has recently been shown to be able to nodulate and fix nitrogen in symbiosis with several mimosoid and papilionoid legumes. In contrast to the symbiosis of legumes with α-proteobacteria, very little is known about the molecular determinants underlying the successful establishment of this mutualistic relationship with β-proteobacteria. In this study, we performed an RNA-sequencing (RNA-seq) analysis of free-living P. phymatum growing under nitrogen-replete and -limited conditions, the latter partially mimicking the situation in nitrogen-deprived soils...
December 15, 2017: Genes
Jennifer Selinski, Andreas Hartmann, Gabriele Deckers-Hebestreit, David A Day, James Whelan, Renate Scheibe
The cyanide-insensitive alternative oxidase (AOX) is a non-proton-pumping ubiquinol oxidase that catalyzes the reduction of oxygen to water and is posttranslationally regulated by redox mechanisms and 2-oxo acids. Arabidopsis ( Arabidopsis thaliana ) possesses five AOX isoforms (AOX1A-AOX1D and AOX2). AOX1D expression is increased in aox1a knockout mutants from Arabidopsis (especially after restriction of the cytochrome c pathway) but cannot compensate for the lack of AOX1A, suggesting a difference in the regulation of these isoforms...
February 2018: Plant Physiology
Dheeraj Kumar Singh, Jitendra Kumar, Vijay Kumar Sharma, Satish Kumar Verma, Arti Singh, Puja Kumari, Ravindra Nath Kharwar
AIM: Extracellular synthesis of silver and gold nanoparticles using aqueous cell-free filtrate (CFF) of endophytic Chaetomium globosum and characterization of its bioactive proteins. METHODS: Temperature and pH gradients were used to assess their effects on dimensions of NPs. NPs were tested in vivo for antibacterial activity. MALDI-TOF-MS/MS was used for characterization of CFF proteins. RESULTS: Fungal CFF fabricated nanoparticles of various shape under varied physicochemical conditions...
January 2018: Nanomedicine
Samuel F H Barnett, Andrew Hitchcock, Amit K Mandal, Cvetelin Vasilev, Jonathan M Yuen, James Morby, Amanda A Brindley, Dariusz M Niedzwiedzki, Donald A Bryant, Ashley J Cadby, Dewey Holten, C Neil Hunter
Techniques such as Stochastic Optical Reconstruction Microscopy (STORM) and Structured Illumination Microscopy (SIM) have increased the achievable resolution of optical imaging, but few fluorescent proteins are suitable for super-resolution microscopy, particularly in the far-red and near-infrared emission range. Here we demonstrate the applicability of CpcA, a subunit of the photosynthetic antenna complex in cyanobacteria, for STORM and SIM imaging. The periodicity and width of fabricated nanoarrays of CpcA, with a covalently attached phycoerythrobilin (PEB) or phycocyanobilin (PCB) chromophore, matched the lines in reconstructed STORM images...
December 1, 2017: Scientific Reports
Weiyu Chen, Ghassan J Maghzal, Anita Ayer, Cacang Suarna, Louise L Dunn, Roland Stocker
Bilirubin, a byproduct of heme catabolism, has been shown to be an effective lipid-soluble antioxidant in vitro. Bilirubin is able to inhibit free radical chain reactions and protects against oxidant-induced damage in vitro and ex vivo. However, direct evidence for bilirubin's antioxidant effects in vivo remains limited. As bilirubin is formed from biliverdin by biliverdin reductase, we generated global biliverdin reductase-a gene knockout (Bvra-/- ) mice to assess the contribution of bilirubin as an endogenous antioxidant...
February 1, 2018: Free Radical Biology & Medicine
Hyun-Chul Kim, Junghwa Chang, Hannah S Lee, Ho Jeong Kwon
Ubiquinol cytochrome c reductase binding protein (UQCRB) is important for mitochondrial complex III stability, electron transport, cellular oxygen sensing and angiogenesis. However, its potential as a prognostic marker in colorectal cancer (CRC) remains unclear. The aim of this study was to determine whether UQCRB can be used as a diagnostic molecular marker for CRC. The correlation between the expression of three genes (UQCRB, UQCRFS1 and MT-CYB) in the mitochondrial respiratory chain complex III and clinico-pathological features was determined...
November 17, 2017: Experimental & Molecular Medicine
Chen-Sung Lin, Li-Tzu Liu, Liang-Hung Ou, Siao-Cian Pan, Chia-I Lin, Yau-Huei Wei
We investigated the role of mitochondrial function in the invasiveness of human colorectal cancer (CRC) cell lines, using paired primary SW480 and metastatic SW620 cells, and appraised the clinical relevance of the alteration of mtDNA copy number in 33 pairs of CRC specimens after surgical resection. Suppression of mitochondrial function was achieved by the exposure of cells to oligomycin A (OA) or by knockdown of mitochondrial transcriptional factor A (TFAM) to evaluate their effects on energy metabolism, reactive oxygen species, protein expression levels of epithelial-mesenchymal transition (EMT) markers and invasive activity of CRC cells...
January 2018: Oncology Reports
Justin G Fedor, Andrew J Y Jones, Andrea Di Luca, Ville R I Kaila, Judy Hirst
Respiratory complex I (NADH:ubiquinone oxidoreductase), one of the largest membrane-bound enzymes in mammalian cells, powers ATP synthesis by using the energy from electron transfer from NADH to ubiquinone-10 to drive protons across the energy-transducing mitochondrial inner membrane. Ubiquinone-10 is extremely hydrophobic, but in complex I the binding site for its redox-active quinone headgroup is ∼20 Å above the membrane surface. Structural data suggest it accesses the site by a narrow channel, long enough to accommodate almost all of its ∼50-Å isoprenoid chain...
November 28, 2017: Proceedings of the National Academy of Sciences of the United States of America
Philip J Jackson, Andrew Hitchcock, David J K Swainsbury, Pu Qian, Elizabeth C Martin, David A Farmer, Mark J Dickman, Daniel P Canniffe, C Neil Hunter
The X-ray crystal structure of the Rhodopseudomonas (Rps.) palustris reaction center-light harvesting 1 (RC-LH1) core complex revealed the presence of a sixth protein component, variably referred to in the literature as helix W, subunit W or protein W. The position of this protein prevents closure of the LH1 ring, possibly to allow diffusion of ubiquinone/ubiquinol between the RC and the cytochrome bc1 complex in analogous fashion to the well-studied PufX protein from Rhodobacter sphaeroides. The identity and function of helix W have remained unknown for over 13years; here we use a combination of biochemistry, mass spectrometry, molecular genetics and electron microscopy to identify this protein as RPA4402 in Rps...
February 2018: Biochimica et Biophysica Acta
Narae Jung, Ho Jeong Kwon, Hye Jin Jung
Glioblastoma stem cell targeted therapies have become a powerful strategy for the treatment of this deadliest brain tumor. We demonstrate for the first time that downregulation of mitochondrial ubiquinol-cytochrome c reductase binding protein (UQCRB) inhibits the cancer stem cell-like properties in human glioblastoma cells. The synthetic small molecules targeting UQCRB significantly suppressed not only the self-renewal capacity such as growth and neurosphere formation, but also the metastatic potential such as migration and invasion of glioblastoma stem‑like cells (GSCs) derived from U87MG and U373MG at subtoxic concentrations...
November 6, 2017: International Journal of Oncology
Ryan A West, Oran G O'Doherty, Trevor Askwith, John Atack, Paul Beswick, Jamie Laverick, Michael Paradowski, Lewis E Pennicott, Srinivasa P S Rao, Gareth Williams, Simon E Ward
African trypanosomiasis is a parasitic disease affecting 5000 humans and millions of livestock animals in sub-Saharan Africa every year. Current treatments are limited, difficult to administer and often toxic causing long term injury or death in many patients. Trypanosome alternative oxidase is a parasite specific enzyme whose inhibition by the natural product ascofuranone (AF) has been shown to be curative in murine models. Until now synthetic methods to AF analogues have been limited, this has restricted both understanding of the key structural features required for binding and also how this chemotype could be developed to an effective therapeutic agent...
December 1, 2017: European Journal of Medicinal Chemistry
Yukina Tatsuta, Kazuaki Kasai, Chitose Maruyama, Yoshimitsu Hamano, Kazuhiko Matsuo, Hajime Katano, Shu Taira
We analyzed the localization of ubiquinol, the reduced form of coenzyme Q10 (Re-CoQ10), in mouse brain sections using matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance imaging mass spectrometry (IMS) to evaluate the effect of dietary Re-CoQ10 in mouse brain. Mice were orally administered Re-CoQ10 for 14 days and brain Re-CoQ10 content was subsequently quantified using liquid chromatography-mass spectrometry. IMS was employed to visualize Re-CoQ10 at a resolution of 150 μm in the mouse brain...
October 11, 2017: Scientific Reports
Oliver T Phillipson
The motor deficits which characterise the sporadic form of Parkinson's disease arise from age-related loss of a subset of dopamine neurons in the substantia nigra. Although motor symptoms respond to dopamine replacement therapies, the underlying disease process remains. This review details some features of the progressive molecular pathology and proposes deployment of a combination of nutrients: R-lipoic acid, acetyl-l-carnitine, ubiquinol, melatonin (or receptor agonists) and vitamin D3, with the collective potential to slow progression of these features...
November 2017: Ageing Research Reviews
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"