keyword
MENU ▼
Read by QxMD icon Read
search

SMN1

keyword
https://www.readbyqxmd.com/read/28524214/-possible-treatments-for-infantile-spinal-atrophy
#1
S I Pascual-Pascual, M Garcia-Romero
The new treatments of spinal muscular atrophy (SMA) due by SMN1 gene deletions are reviewed. There are several ways to increase the protein SMN, its activity and persistence in the tissues. Neuroprotective drugs as olesoxime or riluzole, and drugs acting by epigenetic mechanisms, as histone deacetylase inhibitors, have shown positive effects in preclinical studies but no clear efficacy in clinical trials. They might give in the future added benefits when used associated to other genetic modifying drugs. The best improvements in murine models of SMA and in clinical trials have been reached with antisense oligonucleotides, drugs that modify the splicing of SMN2, and they are expected to get better in the near future...
May 17, 2017: Revista de Neurologia
https://www.readbyqxmd.com/read/28522225/genetic-screening-of-spinal-muscular-atrophy-using-a-real-time-modified-cop-pcr-technique-with-dried-blood-spot-dna
#2
Mawaddah Ar Rochmah, Nur Imma Fatimah Harahap, Emma Tabe Eko Niba, Kenta Nakanishi, Hiroyuki Awano, Ichiro Morioka, Kazumoto Iijima, Toshio Saito, Kayoko Saito, Poh San Lai, Yasuhiro Takeshima, Atsuko Takeuchi, Yoshihiro Bouike, Maya Okamoto, Hisahide Nishio, Masakazu Shinohara
BACKGROUND: Spinal muscular atrophy (SMA) is a common neuromuscular disorder caused by mutations in SMN1. More than 95% of SMA patients carry homozygous SMN1 deletion. SMA is the leading genetic cause of infant death, and has been considered an incurable disease. However, a recent clinical trial with an antisense oligonucleotide drug has shown encouraging clinical efficacy. Thus, early and accurate detection of SMN1 deletion may improve prognosis of many infantile SMA patients. METHODS: A total of 88 DNA samples (37 SMA patients, 12 carriers and 39 controls) from dried blood spots (DBS) on filter paper were analyzed...
May 15, 2017: Brain & Development
https://www.readbyqxmd.com/read/28489755/kennedy-disease-with-difficulty-in-differential-diagnosis-a-case-report
#3
Yating Chen, Peng Luo, Zhongli Li, Hengping Hu, Duobin Wu, Tingting Xu, Xingzuo Wang, Haiting Xie
RATIONALE: Kennedy disease (KD) is also known as spinal bulbar muscular dystrophy. As KD has similar symptoms with most neuromuscular diseases, so it is difficult to make a rapid diagnosis clinically. PATIENT CONCERNS: We report a case of a 43-year-old male with progressive limb proximal weakness without family history. Physical examination showed gynecomastia, erectile dysfunction, bilateral tendon reflex and quadriceps weakness, and tongue muscle atrophy. DIAGNOSES: Laboratory examination found increased creatine kinase, impaired glucose tolerance, and abnormal lactic acid values...
May 2017: Medicine (Baltimore)
https://www.readbyqxmd.com/read/28485722/how-the-discovery-of-iss-n1-led-to-the-first-medical-therapy-for-spinal-muscular-atrophy
#4
REVIEW
N N Singh, M D Howell, E J Androphy, R N Singh
Spinal muscular atrophy (SMA), a prominent genetic disease of infant mortality, is caused by low levels of survival motor neuron (SMN) protein owing to deletions or mutations of the SMN1 gene. SMN2, a nearly identical copy of SMN1 present in humans, cannot compensate for the loss of SMN1 due to predominant skipping of exon 7 during pre-mRNA splicing. With the recent FDA approval of nusinersen (Spinraza™), the potential for correction of SMN2 exon 7 splicing as a SMA therapy has been affirmed. Nusinersen is an antisense oligonucleotide that targets intronic splicing silencer N1 (ISS-N1) discovered in 2004 at the University of Massachusetts Medical School...
May 9, 2017: Gene Therapy
https://www.readbyqxmd.com/read/28460014/a-44g-transition-in-smn2-intron-6-protects-patients-with-spinal-muscular-atrophy
#5
Xingxing Wu, Shu-Huei Wang, Junjie Sun, Adrian R Krainer, Yimin Hua, Thomas W Prior
Spinal muscular atrophy (SMA) is a neuromuscular disease caused by reduced expression of survival of motor neuron (SMN), a protein expressed in humans by two paralogous genes, SMN1 and SMN2. These genes are nearly identical, except for 10 single-nucleotide differences and a 5-nucleotide insertion in SMN2. SMA is subdivided into four main types, with type I being the most severe. SMN2 copy number is a key positive modifier of the disease, but it is not always inversely correlated with clinical severity. We previously reported the c...
April 28, 2017: Human Molecular Genetics
https://www.readbyqxmd.com/read/28456383/adult-onset-spinal-muscular-atrophy-an-update
#6
REVIEW
R Juntas Morales, N Pageot, G Taieb, W Camu
Spinal muscular atrophy (SMA) refers to a group of disorders affecting lower motor neurons. The age of onset of these disorders is variable, ranging from the neonatal period to adulthood. Over the last few years, there has been enormous progress in the description of new genes and phenotypes that throw new light on the molecular pathways involved in motor neuron degeneration. Advances in our understanding of the pathophysiology of the most frequent forms, SMA linked to SMN1 gene mutations and Kennedy disease, has led to the development of therapeutic strategies currently being tested in clinical trials...
April 26, 2017: Revue Neurologique
https://www.readbyqxmd.com/read/28450545/decreased-motor-neuron-support-by-sma-astrocytes-due-to-diminished-mcp1-secretion
#7
J E Martin, T T Nguyen, C Grunseich, J H Nofziger, P R Lee, R D Fields, K H Fischbeck, E Foran
Spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by severe, often fatal muscle weakness, due to loss of motor neurons. SMA patients have deletions and other mutations of the survival of motor neuron 1 (SMN1) gene, resulting in decreased SMN protein. Astrocytes are the primary support cells of the CNS, responsible for glutamate clearance, metabolic support, response to injury, and regulation of signal transmission.Astrocytes have been implicated in SMA as in in other neurodegenerative disorders...
April 27, 2017: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
https://www.readbyqxmd.com/read/28441483/discovery-of-a-novel-class-of-survival-motor-neuron-2-splicing-modifiers-for-the-treatment-of-spinal-muscular-atrophy
#8
Emmanuel Pinard, Luke Green, Michael Reutlinger, Marla Weetall, Nikolai A Naryshkin, John Baird, Karen S Chen, Sergey V Paushkin, Friedrich Metzger, Hasane Ratni
Spinal muscular atrophy (SMA) is caused by mutation or deletion of the survival motor neuron 1 (SMN1) gene, resulting in low levels of functional SMN protein. We have reported recently the identification of small molecules (coumarins, iso-coumarins and pyrido-pyrimidinones) that modify the alternative splicing of SMN2, a paralogous gene to SMN1, restoring the survival motor neuron (SMN) protein level in mouse models of SMA. Herein, we report our efforts to identify a novel chemotype as one strategy to potentially circumvent safety concerns from earlier derivatives such as in vitro phototoxicity and in vitro mutagenicity associated with compounds 1 and 2 or the in vivo retinal findings observed in a long-term chronic tox study with 3 at high exposures only...
May 4, 2017: Journal of Medicinal Chemistry
https://www.readbyqxmd.com/read/28400976/iss-n1-makes-the-first-fda-approved-drug-for-spinal-muscular-atrophy
#9
Eric W Ottesen
Spinal muscular atrophy (SMA) is one of the leading genetic diseases of children and infants. SMA is caused by deletions or mutations of Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, cannot compensate for the loss of SMN1 due to predominant skipping of exon 7. While various regulatory elements that modulate SMN2 exon 7 splicing have been proposed, intronic splicing silencer N1 (ISS-N1) has emerged as the most promising target thus far for antisense oligonucleotide-mediated splicing correction in SMA...
January 2017: Translational Neuroscience
https://www.readbyqxmd.com/read/28389270/combination-of-valproic-acid-and-morpholino-splice-switching-oligonucleotide-produces-improved-outcomes-in-spinal-muscular-atrophy-patient-derived-fibroblasts
#10
Anna Farrelly-Rosch, Chew Ling Lau, Nitin Patil, Bradley J Turner, Fazel Shabanpoor
Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality worldwide, is characterised by the homozygous loss of the survival motor neuron 1 (SMN1) gene. The consequent degeneration of spinal motor neurons and progressive atrophy of voluntary muscle groups results in paralysis and eventually premature infantile death. Humans possess a second nearly identical copy of SMN1, known as SMN2. However, SMN2 produces only 10-20% functional SMN protein due to aberrant splicing of its pre-mRNA that leads to the exclusion of exon 7...
April 4, 2017: Neurochemistry International
https://www.readbyqxmd.com/read/28366534/sma-mutations-in-smn-tudor-and-c-terminal-domains-destabilize-the-protein
#11
Toru Takarada, Mawaddah Ar Rochmah, Nur Imma Fatimah Harahap, Masakazu Shinohara, Toshio Saito, Kayoko Saito, Poh San Lai, Yoshihiro Bouike, Yasuhiro Takeshima, Hiroyuki Awano, Ichiro Morioka, Kazumoto Iijima, Hisahide Nishio, Atsuko Takeuchi
BACKGROUND AND PURPOSE: Most spinal muscular atrophy (SMA) patients are homozygous for survival of motor neuron 1 gene (SMN1) deletion. However, some SMA patients carry an intragenic SMN1 mutation. Such patients provide a clue to understanding the function of the SMN protein and the role of each domain of the protein. We previously identified mutations in the Tudor domain and C-terminal region of the SMN protein in three Japanese SMA patients. To clarify the effect of these mutations on protein stability, we conducted expression assays of SMN with mutated domains...
March 30, 2017: Brain & Development
https://www.readbyqxmd.com/read/28322992/activation-of-the-intronic-cryptic-5-splice-site-depends-on-its-distance-to-the-upstream-cassette-exon
#12
Wei Liu, Xia Li, Shengjie Liao, Kefeng Dou, Yi Zhang
Splice site selection is a key step that determines the mRNA isoforms generated from a single transcript. The large diversity in splice site sequences emphasizes the plasticity of splice site recognition and selection. In this report, a cell-based reporter system using a SMN1/2 cassette exon was applied to study the roles governing the activation of a cryptic 5'SS from the intron 4 of the CT/CGRP gene. We found that the cryptic site was activated when placed within 124nt downstream the cassette exon, and the level of activation was negatively correlated with its distance from the exon...
July 1, 2017: Gene
https://www.readbyqxmd.com/read/28289706/plastin-3-extends-survival-and-reduces-severity-in-mouse-models-of-spinal-muscular-atrophy
#13
Kevin A Kaifer, Eric Villalón, Erkan Y Osman, Jacqueline J Glascock, Laura L Arnold, D D W Cornelison, Christian L Lorson
Spinal muscular atrophy (SMA) is a leading genetic cause of infantile death and is caused by the loss of survival motor neuron-1 (SMN1). Importantly, a nearly identical gene is present called SMN2; however, the majority of SMN2-derived transcripts are alternatively spliced and encode a truncated, dysfunctional protein. Recently, several compounds designed to increase SMN protein have entered clinical trials, including antisense oligonucleotides (ASOs), traditional small molecules, and gene therapy. Expanding beyond SMN-centric therapeutics is important, as it is likely that the breadth of the patient spectrum and the inherent complexity of the disease will be difficult to address with a single therapeutic strategy...
March 9, 2017: JCI Insight
https://www.readbyqxmd.com/read/28284873/establishing-a-reference-dataset-for-the-authentication-of-spinal-muscular-atrophy-cell-lines-using-str-profiling-and-digital-pcr
#14
Deborah L Stabley, Jennifer Holbrook, Ashlee W Harris, Kathryn J Swoboda, Thomas O Crawford, Katia Sol-Church, Matthew E R Butchbach
Fibroblasts and lymphoblastoid cell lines (LCLs) derived from individuals with spinal muscular atrophy (SMA) have been and continue to be essential for translational SMA research. Authentication of cell lines helps ensure reproducibility and rigor in biomedical research. This quality control measure identifies mislabeling or cross-contamination of cell lines and prevents misinterpretation of data. Unfortunately, authentication of SMA cell lines used in various studies has not been possible because of a lack of a reference...
May 2017: Neuromuscular Disorders: NMD
https://www.readbyqxmd.com/read/28281264/resonance-energy-transfer-based-nucleic-acid-hybridization-assays-on-paper-based-platforms-using-emissive-nanoparticles-as-donors
#15
Samer Doughan, M Omair Noor, Yi Han, Ulrich J Krull
Quantum dots (QDs) and upconverting nanoparticles (UCNPs) are luminescent nanoparticles (NPs) commonly used in bioassays and biosensors as resonance energy transfer (RET) donors. The narrow and tunable emissions of both QDs and UCNPs make them versatile RET donors that can be paired with a wide range of acceptors. Ratiometric signal processing that compares donor and acceptor emission in RET-based transduction offers improved precision, as it accounts for fluctuations in the absolute photoluminescence (PL) intensities of the donor and acceptor that can result from experimental and instrumental variations...
2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/28270613/smn-deficiency-in-severe-models-of-spinal-muscular-atrophy-causes-widespread-intron-retention-and-dna-damage
#16
Mohini Jangi, Christina Fleet, Patrick Cullen, Shipra V Gupta, Shila Mekhoubad, Eric Chiao, Norm Allaire, C Frank Bennett, Frank Rigo, Adrian R Krainer, Jessica A Hurt, John P Carulli, John F Staropoli
Spinal muscular atrophy (SMA), an autosomal recessive neuromuscular disease, is the leading monogenic cause of infant mortality. Homozygous loss of the gene survival of motor neuron 1 (SMN1) causes the selective degeneration of lower motor neurons and subsequent atrophy of proximal skeletal muscles. The SMN1 protein product, survival of motor neuron (SMN), is ubiquitously expressed and is a key factor in the assembly of the core splicing machinery. The molecular mechanisms by which disruption of the broad functions of SMN leads to neurodegeneration remain unclear...
March 21, 2017: Proceedings of the National Academy of Sciences of the United States of America
https://www.readbyqxmd.com/read/28269795/smn-blood-levels-in-a-porcine-model-of-spinal-muscular-atrophy
#17
Chitra Iyer, Xueqian Wang, Samantha R Renusch, Sandra I Duque, Allison M Wehr, Xiaokui-Molly Mo, Vicki L McGovern, W David Arnold, Arthur H M Burghes, Stephen J Kolb
BACKGROUND: Spinal Muscular Atrophy (SMA) is an autosomal recessive motor neuron disease that results in loss of spinal motor neurons, muscular weakness and, in severe cases, respiratory failure and death. SMA is caused by a deletion or mutation of the SMN1 gene and retention of the SMN2 gene that leads to low SMN expression levels.The measurement of SMN mRNA levels in peripheral blood samples has been used in SMA clinical studies as a pharmacodynamic biomarker for response to therapies designed to increase SMN levels...
2017: Journal of Neuromuscular Diseases
https://www.readbyqxmd.com/read/28258160/a-new-cis-acting-motif-is-required-for-the-axonal-smn-dependent-anxa2-mrna-localization
#18
Khalil Rihan, Etienne Antoine, Thomas Maurin, Barbara Bardoni, Rémy Bordonné, Johann Soret, Florence Rage
Spinal muscular atrophy (SMA) is caused by mutations and/or deletions of the survival motor neuron gene (SMN1). Besides its function in the biogenesis of spliceosomal snRNPs, SMN might possess a motor neuron specific role and could function in the transport of axonal mRNAs and in the modulation of local protein translation. Accordingly, SMN colocalizes with axonal mRNAs of differentiated NSC-34 motor neuron-like cells. We recently showed that SMN depletion gives rise to a decrease in the axonal transport of the mRNAs encoding Annexin A2 (Anxa2)...
March 3, 2017: RNA
https://www.readbyqxmd.com/read/28229309/nusinersen-first-global-approval
#19
REVIEW
Sheridan M Hoy
Spinal muscular atrophy (SMA) is a rare autosomal recessive disorder characterized by muscle atrophy and weakness resulting from motor neuron degeneration in the spinal cord and brainstem. It is most commonly caused by insufficient levels of survival motor neuron (SMN) protein (which is critical for motor neuron maintenance) secondary to deletions or mutations in the SMN1 gene. Nusinersen (SPINRAZA™) is a modified antisense oligonucleotide that binds to a specific sequence in the intron, downstream of exon 7 on the pre-messenger ribonucleic acid (pre-mRNA) of the SMN2 gene...
March 2017: Drugs
https://www.readbyqxmd.com/read/28219127/-sanger-sequencing-for-the-diagnosis-of-spinal-muscular-atrophy-patients-with-survival-motor-neuron-gene-1-compound-heterozygous-mutation
#20
L Yang, Y Y Cao, Y J Qu, J L Bai, H Wang, Y W Jin, Y L Han, F Song
Objective: To detect the subtle variant of survival motor neuron gene 1(SMN1) by Sanger sequencing, and to assess the value of Sanger sequencing for the diagnosis of spinal muscular atrophy(SMA) with compound heterozygous mutation of SMN1. Methods: Fifty-two patients suspected SMA were recruited by the Capital Institute of Pediatrics from Jan.2014 to June.2016. PCR was used for amplifying exon7 of SMN1 and SMN2 in 52 patients. Natural different base peaks on the sequencing chromatogram in the SMN1 and SMN2 within the amplified segments were identified with Sanger DNA sequencing to detect the homozygous deletion or heterozygous deletion of SMN1...
February 14, 2017: Zhonghua Yi Xue za Zhi [Chinese medical journal]
keyword
keyword
36468
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"