keyword
MENU ▼
Read by QxMD icon Read
search

BMP-2 electrospun

keyword
https://www.readbyqxmd.com/read/28500409/physicochemical-and-biological-characteristics-of-bmp-2-igf-1-loaded-three-dimensional-coaxial-electrospun-fibrous-membranes-for-bone-defect-repair
#1
Lihua Yin, Shaohua Yang, Miaomiao He, Yuchen Chang, Kaijuan Wang, Yidan Zhu, Yuhui Liu, Yaoren Chang, Zhanhai Yu
Coaxial electrospun fibrous membranes show favorable mechanical properties for use in guided bone regeneration (GBR). We used coaxial electrospinning technology to fabricate three-dimensional nanofiber membranes loaded with BMP-2 and IGF-1, and assessed the physicochemical and biological properties of these novel membranes in vitro. We fabricated four experimental groups of BMP-2/IGF-1/BSA-loaded membranes with different flow ratios (shell/core). Membrane characteristics were assessed by scanning and transmission electron microscopy, and laser confocal microscopy...
June 2017: Journal of Materials Science. Materials in Medicine
https://www.readbyqxmd.com/read/28380671/bicomponent-fibrous-scaffolds-made-through-dual-source-dual-power-electrospinning-dual-delivery-of-rhbmp-2-and-ca-p-nanoparticles-and-enhanced-biological-performances
#2
Chong Wang, William Weijia Lu, Min Wang
Electrospun scaffolds incorporated with both calcium phosphates (Ca-P) and bone morphogenetic protein-2 (BMP-2) have been used for bone tissue regeneration. However, in most cases BMP-2 and Ca-P were simply mixed and loaded in a monolithic structure, risking low BMP-2 loading level, reduced BMP-2 biological activity, uncontrolled BMP-2 release and inhomogeneous Ca-P distribution. In this investigation, novel bicomponent scaffolds having evenly distributed rhBMP-2-containing fibers and Ca-P nanoparticle-containing fibers were made using an established dual-source dual-power electrospinning technique with the assistance of emulsion electrospinning and blend electrospinning...
April 5, 2017: Journal of Biomedical Materials Research. Part A
https://www.readbyqxmd.com/read/28338419/competitive-protein-binding-influences-heparin-based-modulation-of-spatial-growth-factor-delivery-for-bone-regeneration
#3
Marian H Hettiaratchi, Catherine Chou, Nicholas Servies, Johanna M Smeekens, Albert Cheng, Camden Esancy, Ronghu Wu, Todd C McDevitt, Robert E Guldberg, Laxminarayanan Krishnan
Tissue engineering strategies involving the in vivo delivery of recombinant growth factors are often limited by the inability of biomaterials to spatially control diffusion of the delivered protein within the site of interest. The poor spatiotemporal control provided by porous collagen sponges, which are used for the clinical delivery of bone morphogenetic protein-2 (BMP-2) for bone regeneration, has necessitated the use of supraphysiological protein doses, leading to inflammation and heterotopic ossification...
March 24, 2017: Tissue Engineering. Part A
https://www.readbyqxmd.com/read/28254298/2-n-6-o-sulfated-chitosan-assisted-bmp-2-immobilization-of-pcl-scaffolds-for-enhanced-osteoinduction
#4
Lingyan Cao, Yuanman Yu, Jing Wang, Jerome A Werkmeister, Keith M McLean, Changsheng Liu
The aim of this study was to develop a 2-N, 6-O-sulfated chitosan (26SCS) modified electrospun fibrous PCL scaffold for bone morphogenetic protein-2 (BMP-2) delivery to improve osteoinduction. The PCL scaffold was modified by an aminolysis reaction using ethylenediamine (ED) and 26SCS was immobilized via electrostatic interactions (PCL-N-S). Scaffolds were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurements...
May 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28051358/controlled-retention-of-bmp-2-derived-peptide-on-nanofibers-based-on-mussel-inspired-adhesion-for-bone-formation
#5
Jinkyu Lee, Sajeesh Kumar Madhurakkat Perikamana, Taufiq Ahmad, Min Suk Lee, Hee Seok Yang, Do-Gyoon Kim, Kyobum Kim, Bosun Kwon, Heungsoo Shin
Although bone morphogenetic protein-2 (BMP-2) has been frequently used to stimulate bone formation, it has several side effects to be addressed, including the difficulty in optimization of clinically relevant doses and unwanted induction of cancerous signaling processes. In this study, an osteogenic peptide (OP) derived from BMP-2 was investigated as a substitute for BMP-2. In vitro studies showed that OP was able to enhance the osteogenic differentiation and mineralization of human mesenchymal stem cells (hMSCs)...
April 2017: Tissue Engineering. Part A
https://www.readbyqxmd.com/read/27931176/in-vitro-evaluation-of-electrospun-silk-fibroin-nano-hydroxyapatite-bmp-2-scaffolds-for-bone-regeneration
#6
Bingjie Niu, Bin Li, Yong Gu, Xiaofeng Shen, Yong Liu, Liang Chen
Bone tissue engineering by using osteoinductive scaffolds seeded with stem cells to promote bone extracellular matrix (ECM) production and remodeling has evolved into a promising approach for bone repair and regeneration. In order to mimic the ECM of bone tissue structurally and compositionally, nanofibrous silk fibroin (SF) scaffolds containing hydroxyapatite (HAP) nanoparticles and bone morphogenetic protein 2 (BMP-2) were fabricated in this study using electrospinning technique. The microstructure, mechanical property, biocompatibility, and osteogenic characteristics were examined...
February 2017: Journal of Biomaterials Science. Polymer Edition
https://www.readbyqxmd.com/read/27319221/delivery-of-rhbmp-2-plasmid-dna-complexes-via-a-plla-collagen-electrospun-scaffold-induces-ectopic-bone-formation
#7
Xia Zhao, David E Komatsu, Michael Hadjiargyrou
The development of effective strategies for gene delivery is a critical goal in DNA-based tissue engineering. Previously, our laboratory utilized the process of electrospinning to fabricate plasmid DNA-based polymeric scaffolds. Although there lease of DNA was robust, the in vitro transfection efficiency was low. In order to optimize these results, we recently modified our approach and utilized a strategy to adsorb plasmid DNA transfection complexes onto a PLLA/Collagen I electrospun scaffold for the delivery of recombinant human Bone Morphogenetic Protein-2 (rhBMP-2)...
June 2016: Journal of Biomedical Nanotechnology
https://www.readbyqxmd.com/read/26642073/fabrication-of-multi-biofunctional-gelatin-based-electrospun-fibrous-scaffolds-for-enhancement-of-osteogenesis-of-mesenchymal-stem-cells
#8
Wei-Han Lin, Jiashing Yu, Guoping Chen, Wei-Bor Tsai
Biofunctional scaffolds that support the adhesion, proliferation, and osteo-differentiation of mesenchymal stem cells (MSCs) are critical for bone tissue engineering. In this study, a simple in situ UV-crosslinking strategy was utilized to fabricate gelatin electrospun fibrous (GEF) scaffolds with multiple biosignals, including cell adhesive Arg-Gly-Asp (RGD) peptide, osteo-conductive hydroxyapatite (HAp) nanoparticles, and osteo-inductive bone morphogenic protein-2 (BMP-2). The adhesion and proliferation of MSCs on the GEF scaffolds were improved by the incorporation of RGD...
February 1, 2016: Colloids and Surfaces. B, Biointerfaces
https://www.readbyqxmd.com/read/26474622/-wound-healing-effects-of-silk-fibroin-bone-morphogenetic-protein-2-scaffolds-on-inflammatory-pulp-in-rats
#9
Tao Yu, Ting Jiang, Qing-mei Wei, Yi-fen Li, David L Kaplan
OBJECTIVE: To identify the healing effect of electrospun silk fibroin-BMP-2 as a biologic pulp capping agent to inflammatory pulp in rat caused by lipopolysaccharide (LPS). METHODS: A total of 30 healthy adult male Wistar rats were randomly divided into five groups:(1) normal control group without operation; (2) blank control group without capping agents; (3) calcium hydroxide capping group; (4) electrospun silk fibroin capping group; (5) electrospun silk fibroin-BMP-2 capping group...
October 18, 2015: Beijing da Xue Xue Bao. Yi Xue Ban, Journal of Peking University. Health Sciences
https://www.readbyqxmd.com/read/26119373/a-nano-micro-alternating-multilayer-scaffold-loading-with-rbmscs-and-bmp-2-for-bone-tissue-engineering
#10
Shan Ding, Long Li, Xian Liu, Guang Yang, Guangliang Zhou, Shaobing Zhou
In this study, we develop a nano-micro alternating multilayer scaffold for bone tissue engineering by incorporation of monodispersed calcium alginate microbeads into electrospun polymer nanofibers. Both rat bone marrow mesenchymal stem cells (rBMSCs) and bone morphogenetic protein-2 (BMP-2) are simultaneously loaded into the microbeads, which are generated from a microfluidic device. The layer number of the scaffold can be readily controlled by alternately repeating the electrospinning and the microfluidic processes...
September 1, 2015: Colloids and Surfaces. B, Biointerfaces
https://www.readbyqxmd.com/read/26106926/membrane-reinforced-three-dimensional-electrospun-silk-fibroin-scaffolds-for-bone-tissue-engineering
#11
Sung Yeun Yang, Tae Heon Hwang, Lihua Che, Jin Soo Oh, Yoon Ha, WonHyoung Ryu
Electrospun silk fibroin (SF) scaffolds have drawn much attention because of their resemblance to natural tissue architecture such as extracellular matrix, and the biocompatibility of SF as a candidate material to replace collagen. However, electrospun scaffolds lack the physical integrity of bone tissue scaffolds, which require resistance to mechanical loadings. In this work, we propose membrane-reinforced electrospun SF scaffolds by a serial process of electrospinning and freeze-drying of SF solutions in two different solvents: formic acid and water, respectively...
June 24, 2015: Biomedical Materials
https://www.readbyqxmd.com/read/26082632/mesoporous-bioactive-glass-surface-modified-poly-lactic-co-glycolic-acid-electrospun-fibrous-scaffold-for-bone-regeneration
#12
Shijie Chen, Zhiyuan Jian, Linsheng Huang, Wei Xu, Shaohua Liu, Dajiang Song, Zongmiao Wan, Amanda Vaughn, Ruisen Zhan, Chaoyue Zhang, Song Wu, Minghua Hu, Jinsong Li
A mesoporous bioactive glass (MBG) surface modified with poly(lactic-co-glycolic acid) (PLGA) electrospun fibrous scaffold for bone regeneration was prepared by dip-coating a PLGA electrospun fibrous scaffold into MBG precursor solution. Different surface structures and properties were acquired by different coating times. Surface morphology, chemical composition, microstructure, pore size distribution, and hydrophilicity of the PLGA-MBG scaffold were characterized. Results of scanning electron microscopy indicated that MBG surface coating made the scaffold rougher with the increase of MBG content...
2015: International Journal of Nanomedicine
https://www.readbyqxmd.com/read/25823598/effects-of-immobilized-bmp-2-and-nanofiber-morphology-on-in-vitro-osteogenic-differentiation-of-hmscs-and-in-vivo-collagen-assembly-of-regenerated-bone
#13
Sajeesh Kumar Madhurakkat Perikamana, Jinkyu Lee, Taufiq Ahmad, Yonghoon Jeong, Do-Gyoon Kim, Kyobum Kim, Heungsoo Shin
Engineering bone tissue is particularly challenging because of the distinctive structural features of bone within a complex biochemical environment. In the present study, we fabricated poly(L-lactic acid) (PLLA) electrospun nanofibers with random and aligned morphology immobilized with bone morphogenic protein-2 (BMP-2) and investigated how these signals modulate (1) in vitro osteogenic differentiation of human mesenchymal stem cells (hMSCs) and (2) in vivo bone growth rate, mechanical properties, and collagen assembly of newly formed bone...
April 29, 2015: ACS Applied Materials & Interfaces
https://www.readbyqxmd.com/read/25813520/salicylic-acid-based-polymers-for-guided-bone-regeneration-using-bone-morphogenetic-protein-2
#14
Sangeeta Subramanian, Ashley Mitchell, Weiling Yu, Sabrina Snyder, Kathryn Uhrich, J Patrick O'Connor
Bone morphogenetic protein-2 (BMP-2) is used clinically to promote spinal fusion, treat complex tibia fractures, and to promote bone formation in craniomaxillofacial surgery. Excessive bone formation at sites where BMP-2 has been applied is an established complication and one that could be corrected by guided tissue regeneration methods. In this study, anti-inflammatory polymers containing salicylic acid [salicylic acid-based poly(anhydride-ester), SAPAE] were electrospun with polycaprolactone (PCL) to create thin flexible matrices for use as guided bone regeneration membranes...
July 2015: Tissue Engineering. Part A
https://www.readbyqxmd.com/read/25689580/evaluation-of-nanostructure-and-microstructure-of-bone-regenerated-by-bmp-2-porous-scaffolds
#15
Carlos Del Rosario, Maria Rodríguez-Evora, Ricardo Reyes, Alejandro González-Orive, Alberto Hernández-Creus, Kevin M Shakesheff, Lisa J White, Araceli Delgado, Carmen Evora
In this study, three systems containing BMP-2 were fabricated, including two electrospun sandwich-like-systems of PLGA 75:25 and PLGA 50:50 and a microsphere system of PLGA 50:50 to be implanted in a critical size defect in rat calvaria. The in vivo BMP-2 release profiles of the three systems were similar. The total dose was released during the first two weeks. To evaluate the nano and microstructure of the regenerated bone a multi-technique analysis was used, including stereo microscope, X-Ray; AFM, micro-CT, and histological analyses...
September 2015: Journal of Biomedical Materials Research. Part A
https://www.readbyqxmd.com/read/25453952/controlled-dual-delivery-of-bmp-2-and-dexamethasone-by-nanoparticle-embedded-electrospun-nanofibers-for-the-efficient-repair-of-critical-sized-rat-calvarial-defect
#16
Long Li, Guangliang Zhou, Yi Wang, Guang Yang, Shan Ding, Shaobing Zhou
There is an urgent need to develop biomimetic bone tissue engineering scaffolds for the repair of critical-sized calvarial defect. In this study, we developed a new nanoparticle-embedded electrospun nanofiber scaffold for the controlled dual delivery of BMP-2 and dexamethasone (DEX). The scaffold was achieved by (1) the encapsulation of BMP-2 into bovine serum albumin (BSA) nanoparticles to maintain the bioactivity of BMP-2 and (2) the co-electrospinning of the blending solution composed of the BSA nanoparticles, DEX and the poly(ε-caprolactone)-co-poly(ethylene glycol) (PCE) copolymer...
January 2015: Biomaterials
https://www.readbyqxmd.com/read/24935525/in-vitro-and-in-vivo-studies-of-bmp-2-loaded-pcl-gelatin-bcp-electrospun-scaffolds
#17
Bo-Ram Kim, Thuy Ba Linh Nguyen, Young-Ki Min, Byong-Taek Lee
To confirm the effect of recombinant human bone morphogenetic protein-2 (BMP-2) for bone regeneration, BMP-2-loaded polycaprolactone (PCL)-gelatin (Gel)-biphasic calcium phosphate (BCP) fibrous scaffolds were fabricated using the electrospinning method. The electrospinning process to incorporate BCP nanoparticles into the PCL-Gel scaffolds yielded an extracellular matrix-like microstructure that was a hybrid system composed of nano- and micro-sized fibers. BMP-2 was homogeneously loaded on the PCL-Gel-BCP scaffolds for enhanced induction of bone growth...
December 2014: Tissue Engineering. Part A
https://www.readbyqxmd.com/read/24785365/infrapatellar-fat-pad-derived-stem-cells-maintain-their-chondrogenic-capacity-in-disease-and-can-be-used-to-engineer-cartilaginous-grafts-of-clinically-relevant-dimensions
#18
Yurong Liu, Conor Timothy Buckley, Henrique V Almeida, Kevin J Mulhall, Daniel John Kelly
A therapy for regenerating large cartilaginous lesions within the articular surface of osteoarthritic joints remains elusive. While tissue engineering strategies such as matrix-assisted autologous chondrocyte implantation can be used in the repair of focal cartilage defects, extending such approaches to the treatment of osteoarthritis will require a number of scientific and technical challenges to be overcome. These include the identification of an abundant source of chondroprogenitor cells that maintain their chondrogenic capacity in disease, as well as the development of novel approaches to engineer scalable cartilaginous grafts that could be used to resurface large areas of damaged joints...
November 2014: Tissue Engineering. Part A
https://www.readbyqxmd.com/read/24559435/smurf1-knocked-down-mesenchymal-stem-cells-and-bmp-2-in-an-electrospun-system-for-bone-regeneration
#19
María Rodríguez-Évora, Emiliano García-Pizarro, Carlos del Rosario, Javier Pérez-López, Ricardo Reyes, Araceli Delgado, José C Rodríguez-Rey, Carmen Évora
A sandwich-like system, fabricated with electrospun, poly(lactic-co-glycolic-acid) (PLGA) membranes incorporating either human recombinant bone morphogenetic protein 2 (BMP-2) enriched microspheres, rat bone marrow mesenchymal stem cells (rMSC), or rMSC with their Smurf1 (SMAD ubiquitin regulatory factor-1) expression knocked down by means of siRNA (rMSC573) at varying densities was evaluated in a rat calvarial, critical-size defect. The behavior of four membrane varieties, fabricated with different PLGA copolymers, was initially studied in rMSC cultures to decide on optimal membrane degradation and cell proliferation and differentiation characteristics...
April 14, 2014: Biomacromolecules
https://www.readbyqxmd.com/read/23956214/osteogenetic-properties-of-electrospun-nanofibrous-pcl-scaffolds-equipped-with-chitosan-based-nanoreservoirs-of-growth-factors
#20
Alice Ferrand, Sandy Eap, Ludovic Richert, Stéphanie Lemoine, Deepak Kalaskar, Sophie Demoustier-Champagne, Hassan Atmani, Yves Mély, Florence Fioretti, Guy Schlatter, Liisa Kuhn, Guy Ladam, Nadia Benkirane-Jessel
Bioactive implants intended for rapid, robust, and durable bone tissue regeneration are presented. The implants are based on nanofibrous 3D-scaffolds of bioresorbable poly-ϵ-caprolactone mimicking the fibrillar architecture of bone matrix. Layer-by-layer nanoimmobilization of the growth factor BMP-2 in association with chitosan (CHI) or poly-L-lysine over the nanofibers is described. The osteogenetic potential of the scaffolds coated with layers of CHI and BMP-2 is demonstrated in vitro, and in vivo in mouse calvaria, through enhanced osteopontin gene expression and calcium phosphate biomineralization...
January 2014: Macromolecular Bioscience
keyword
keyword
36453
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"