Read by QxMD icon Read

Friedreich ataxia

Michael H Parkinson, Ana P Bartmann, Lisa M S Clayton, Suran Nethisinghe, Rolph Pfundt, J Paul Chapple, Mary M Reilly, Hadi Manji, Nicholas J Wood, Fion Bremner, Paola Giunti
Autosomal recessive spastic ataxia of Charlevoix-Saguenay is a rare neurodegenerative disorder caused by mutations in the SACS gene. Thickened retinal nerve fibres visible on fundoscopy have previously been described in these patients; however, thickening of the retinal nerve fibre layer as demonstrated by optical coherence tomography appears to be a more sensitive and specific feature. To test this observation, we assessed 292 individuals (191 patients with ataxia and 101 control subjects) by peripapillary time-domain optical coherence tomography...
March 12, 2018: Brain: a Journal of Neurology
Kevin C Kemp, Kelly Hares, Juliana Redondo, Amelia J Cook, Harry R Haynes, Bronwen R Burton, Mark A Pook, Claire M Rice, Neil J Scolding, Alastair Wilkins
OBJECTIVES: Friedreich's ataxia is an incurable inherited neurological disease caused by frataxin deficiency. Here we report the neuro-reparative effects of myeloablative allogeneic bone marrow transplantation in a humanised murine model of the disease. METHODS: Mice received a transplant of fluorescently-tagged sex mis-matched bone marrow cells expressing wild-type frataxin and were assessed at monthly intervals using a range of behavioural motor performance tests...
March 13, 2018: Annals of Neurology
Giulia Barcia, Myriam Rachid, Maryse Magen, Zahra Assouline, Michel Koenig, Benoit Funalot, Christine Barnerias, Agnès Rötig, Arnold Munnich, Jean-Paul Bonnefont, Julie Steffann
Freidreich ataxia (FRDA) is the most common hereditary ataxia, nearly 98% of patients harbouring homozygous GAA expansions in intron 1 of the FXN gene (NM_000144.4). The remaining patients are compound heterozygous for an expansion and a point mutation or an exonic deletion. Molecular screening for FXN expansion is therefore focused on (GAA)n expansion analysis, commonly performed by triplet repeat primed PCR (PT-PCR). We report on an initial pitfall in the molecular characterization of a 15 year-old girl with Freidreich ataxia (FRDA) who carried a rare deletion in intron 1 of the FXN gene...
March 9, 2018: European Journal of Medical Genetics
Anasheh Halabi, Kayla T B Fuselier, Ed Grabczyk
DNA repeat expansion underlies dozens of progressive neurodegenerative disorders. While the mechanisms driving repeat expansion are not fully understood, increasing evidence suggests a central role for DNA mismatch repair. The mismatch repair recognition complex MutSβ (MSH2-MSH3) that binds mismatched bases and/or insertion/deletion loops has previously been implicated in GAA•TTC, CAG•CTG and CGG•CCG repeat expansion, suggesting a shared mechanism. MutSβ has been studied in a number of models, but the contribution of subsequent steps mediated by the MutL endonuclease in this pathway is less clear...
February 26, 2018: Nucleic Acids Research
Stephanie E Wallace, Thomas D Bird
Purpose of review: Because of extensive clinical overlap among many forms of hereditary ataxia, molecular genetic testing is often required to establish a diagnosis. Interrogation of multiple genes has become a popular diagnostic approach as the cost of sequence analysis has decreased and the number of genes associated with overlapping phenotypes has increased. We describe the benefits and limitations of molecular genetic tests commonly used to determine the etiology of hereditary ataxia...
February 2018: Neurology. Clinical Practice
Mauricio Cardenas-Rodriguez, Afroditi Chatzi, Kostas Tokatlidis
Iron-sulfur clusters are ubiquitous inorganic co-factors that contribute to a wide range of cell pathways including the maintenance of DNA integrity, regulation of gene expression and protein translation, energy production, and antiviral response. Specifically, the iron-sulfur cluster biogenesis pathways include several proteins dedicated to the maturation of apoproteins in different cell compartments. Given the complexity of the biogenesis process itself, the iron-sulfur research area constitutes a very challenging and interesting field with still many unaddressed questions...
March 6, 2018: Journal of Biological Inorganic Chemistry: JBIC
Ignacio Hugo Castro, Alejandro Ferrari, María Georgina Herrera, Martín Ezequiel Noguera, Lorenzo Maso, Monica Benini, Alessandra Rufini, Roberto Testi, Paola Costantini, Javier Santos
Friedreich's ataxia is a disease caused by a decrease in the levels of expression or loss of functionality of the mitochondrial protein frataxin (FXN). The development of an active and stable recombinant variant of FXN is important for protein replacement therapy. Although valuable data about the mature form FXN81-210 has been collected, not enough information is available about the conformation of the frataxin precursor (FXN1-210). We investigated the conformation, stability and function of a recombinant precursor variant (His6-TAT-FXN1-210), which includes a TAT peptide in the N-terminal region to assist with transport across cell membranes...
March 2018: FEBS Open Bio
Marta Seco-Cervera, Dayme González-Rodríguez, José Santiago Ibáñez-Cabellos, Lorena Peiró-Chova, Federico V Pallardó, José Luis García-Giménez
Friedreich's ataxia (FRDA; OMIM 229300), an autosomal recessive neurodegenerative mitochondrial disease, is the most prevalent hereditary ataxia. In addition, FRDA patients have shown additional non-neurological features such as scoliosis, diabetes, and cardiac complications. Hypertrophic cardiomyopathy, which is found in two thirds of patients at the time of diagnosis, is the primary cause of death in these patients. Here, we used small RNA-seq of microRNAs (miRNAs) purified from plasma samples of FRDA patients and controls...
March 6, 2018: Scientific Data
Geneieve Tai, Louise A Corben, Eppie M Yiu, Sarah C Milne, Martin B Delatycki
Friedreich ataxia (FRDA) is a progressive neurological disorder affecting approximately 1 in 29,000 individuals of European descent. At present, there is no approved pharmacological treatment for this condition however research into treatment of FRDA has advanced considerably over the last two decades since the genetic cause was identified. Current proposed treatment strategies include decreasing oxidative stress, increasing cellular frataxin, improving mitochondrial function as well as modulating frataxin controlled metabolic pathways...
February 19, 2018: Neurologia i Neurochirurgia Polska
Klaus Rüther
Hereditary optic nerve disorders are rare. For ophthalmologists, Leber's hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (ADOA) are of particular relevance. LHON and ADOA are diseases of the retinal ganglion cells and are caused by mitchochondrial dysfunction. LHON is based on mutations of the mitochondrial, ADOA of the nuclear DNA. LHON is a disease that usually leads to severe visual impairment (visual acuity < 0.1). Since there is an approved therapy for LHON (Idebenone [Raxone]), the diagnosis has to be confirmed immediately by means of molecular genetic diagnostics...
February 28, 2018: Klinische Monatsblätter Für Augenheilkunde
Alexander J Neil, Miranda U Liang, Alexandra N Khristich, Kartik A Shah, Sergei M Mirkin
Expansion of simple DNA repeats is responsible for numerous hereditary diseases in humans. The role of DNA replication, repair and transcription in the expansion process has been well documented. Here we analyzed, in a yeast experimental system, the role of RNA-DNA hybrids in genetic instability of long (GAA)n repeats, which cause Friedreich's ataxia. Knocking out both yeast RNase H enzymes, which counteract the formation of RNA-DNA hybrids, increased (GAA)n repeat expansion and contraction rates when the repetitive sequence was transcribed...
February 13, 2018: Nucleic Acids Research
QingQing Wang, Lili Guo, Cassandra J Strawser, Lauren A Hauser, Wei-Ting Hwang, Nathaniel W Snyder, David R Lynch, Clementina Mesaros, Ian A Blair
Friedreich's ataxia (FA) is an autosomal recessive neurodegenerative disorder, which results primarily from reduced expression of the mitochondrial protein frataxin. FA has an estimated prevalence of one in 50,000 in the population, making it the most common hereditary ataxia. Paradoxically, mortality arises most frequently from cardiomyopathy and cardiac failure rather than from neurological effects. Decreased high-density lipoprotein (HDL) and apolipoprotein A-I (ApoA-l) levels in the general population are associated with an increased risk of mortality from cardiomyopathy and heart failure...
2018: PloS One
Theresa A Zesiewicz, George Wilmot, Sheng-Han Kuo, Susan Perlman, Patricia E Greenstein, Sarah H Ying, Tetsuo Ashizawa, S H Subramony, Jeremy D Schmahmann, K P Figueroa, Hidehiro Mizusawa, Ludger Schöls, Jessica D Shaw, Richard M Dubinsky, Melissa J Armstrong, Gary S Gronseth, Kelly L Sullivan
OBJECTIVE: To systematically review evidence regarding ataxia treatment. METHODS: A comprehensive systematic review was performed according to American Academy of Neurology methodology. CONCLUSIONS: For patients with episodic ataxia type 2, 4-aminopyridine 15 mg/d probably reduces ataxia attack frequency over 3 months (1 Class I study). For patients with ataxia of mixed etiology, riluzole probably improves ataxia signs at 8 weeks (1 Class I study)...
February 9, 2018: Neurology
Hamid Hamzeiy, Doruk Savaş, Ceren Tunca, Nesli Ece Şen, Aslı Gündoğdu Eken, Irmak Şahbaz, Daniela Calini, Cinzia Tiloca, Nicola Ticozzi, Antonia Ratti, Vincenzo Silani, A Nazlı Başak
Adult-onset neurological disorders are caused and influenced by a multitude of different factors, including epigenetic modifications. Here, using an ELISA kit selected upon careful testing, we investigated global 5-methylcytosine (5-mC) levels in sporadic and familial amyotrophic lateral sclerosis (sALS and fALS), spinocerebellar ataxia types 1 and 2 (SCA1 and SCA2), Huntington's disease, Friedreich's ataxia, and myotonic dystrophy type 1. We report a significant elevation in global 5-mC levels of about 2-7% on average for sALS (p < 0...
February 9, 2018: Neuro-degenerative Diseases
Hong Lin, Jordi Magrane, Amy Rattelle, Anna Stepanova, Alexander Galkin, Elisia M Clark, Yi Na Dong, Sarah M Halawani, David R Lynch
No abstract text is available yet for this article.
January 29, 2018: Disease Models & Mechanisms
Tommaso Schirinzi, Gessica Vasco, Ginevra Zanni, Sara Petrillo, Fiorella Piemonte, Enrico Castelli, Enrico Silvio Bertini
Serum uric acid (UA) is a circulating antioxidant whose levels are typically lower in patients with idiopathic neurodegenerative diseases than healthy controls, reflecting a higher oxidative stress. Here we provided the first assessment of serum UA in Friedreich Ataxia (FRDA), an inherited neurodegenerative disorder, aimed at exploring novel disease biomarkers. Serum UA was measured in 19 FRDA patients and compared to 26 healthy controls (CTL). Multivariate analysis was conducted to eliminate main confounding factors (age, gender and BMI)...
February 2, 2018: Clinical Biochemistry
Ricardo Garcia-Serres, Martin Clémancey, Jean-Marc Latour, Geneviève Blondin
Fe/S cluster biogenesis involves a complex machinery comprising several mitochondrial and cytosolic proteins. Fe/S cluster biosynthesis is closely intertwined with iron trafficking in the cell. Defects in Fe/S cluster elaboration result in severe diseases such as Friedreich ataxia. Deciphering this machinery is a challenge for the scientific community. Because iron is a key player, 57Fe-Mössbauer spectroscopy is especially appropriate for the characterization of Fe species and monitoring the iron distribution...
January 19, 2018: Journal of Biological Inorganic Chemistry: JBIC
Björn De Samber, Eline Meul, Brecht Laforce, Boel De Paepe, Joél Smet, Michiel De Bruyne, Riet De Rycke, Sylvain Bohic, Peter Cloetens, Rudy Van Coster, Peter Vandenabeele, Tom Vanden Berghe
Synchrotron radiation based nanoscopic X-ray fluorescence (SR nano-XRF) analysis can visualize trace level elemental distribution in a fully quantitative manner within single cells. However, in-air XRF analysis requires chemical fixation modifying the cell's chemical composition. Here, we describe first nanoscopic XRF analysis upon cryogenically frozen (-150°C) fibroblasts at the ID16A-NI 'Nano-imaging' end-station located at the European Synchrotron Radiation Facility (ESRF) in Grenoble (France). Fibroblast cells were obtained from skin biopsies from control and Friedreich's ataxia (FRDA) patients...
2018: PloS One
Liande Li, Xiulong Shen, Zhongtian Liu, Michaela Norrbom, Thazha P Prakash, Daniel O'Reilly, Vivek K Sharma, Masad J Damha, Jonathan K Watts, Frank Rigo, David R Corey
Friedreich's Ataxia (FA) is an inherited neurologic disorder caused by an expanded GAA repeat within intron 1 of the frataxin (FXN) gene that reduces expression of FXN protein. Agents that increase expression of FXN have the potential to alleviate the disease. We previously reported that duplex RNAs (dsRNAs) and antisense oligonucleotides (ASOs) complementary to the GAA repeat could enhance expression of FXN protein. We now explore the potential of a diverse group of chemically modified dsRNAs and ASOs to define the breadth of repeat-targeted synthetic nucleic acids as a platform for therapeutic development for FA...
January 17, 2018: Nucleic Acid Therapeutics
Lorène Télot, Elodie Rousseau, Emmanuel Lesuisse, Camille Garcia, Bastien Morlet, Thibaut Léger, Jean-Michel Camadro, Valérie Serre
Friedreich's ataxia (FRDA) represents the most frequent type of autosomal-recessively inherited ataxia and is caused by the deficiency of frataxin, a mitochondrial protein. It is known that frataxin-deficiency leads to alterations in cellular and mitochondrial iron metabolism and impacts in the cell physiology at several levels. Frataxin is thought to play a role in iron-sulfur cluster biogenesis and heme synthesis. Currently, cellular antioxidant defense is dysregulated when frataxin is deficient, which exacerbates oxidative damage in FRDA...
January 9, 2018: Biochimica et Biophysica Acta
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"