Read by QxMD icon Read

Stem cell in sport medicine

Marie Maumus, Gautier Roussignol, Karine Toupet, Geraldine Penarier, Isabelle Bentz, Sandrine Teixeira, Didier Oustric, Mireille Jung, Olivier Lepage, Regis Steinberg, Christian Jorgensen, Danièle Noel
OBJECTIVE: Mesenchymal stem cells isolated from adipose tissue (ASC) have been shown to influence the course of osteoarthritis (OA) in different animal models and are promising in veterinary medicine for horses involved in competitive sport. The aim of this study was to characterize equine ASCs (eASCs) and investigate the role of interferon-gamma (IFNγ)-priming on their therapeutic effect in a murine model of OA, which could be relevant to equine OA. METHODS: ASC were isolated from subcutaneous fat...
2016: Frontiers in Immunology
Hamish Osborne, Adam Castricum
No abstract text is available yet for this article.
October 2016: British Journal of Sports Medicine
Isabel Andia, Nicola Maffulli
Regenerative medicine seeks to harness the potential of cell biology for tissue replacement therapies, which will restore lost tissue functionality. Controlling and enhancing tissue healing is not just a matter of cells, but also of molecules and mechanical forces. We first describe the main biological technologies to boost musculoskeletal healing, including bone marrow and subcutaneous fat-derived regenerative products, as well as platelet-rich plasma and conditioned media. We provide some information describing possible mechanisms of action...
September 28, 2016: Sports Medicine
Adam Anz
The orthopedic sports medicine profession experienced a pivotal shift with the acceptance and application of the arthroscope. The next leap forward will hinge on the acceptance, application, and regulation of biologic therapies, and a sentinel event will be the US Food and Drug Administration approval of a stem cell technology. While the arthroscope was developed in the hands of our sports medicine mentors, the current history of biologics has been mostly written by basic scientists. The baby steps of these technologies have involved benchtop laboratory studies and preclinical animal trials, clearly illustrating great potential...
July 2016: American Journal of Orthopedics
James H-C Wang, Issei Komatsu
Millions of people suffer from tendon injuries in both occupational and athletic settings. However, the restoration of normal structure and function to injured tendons still remains as one of the greatest challenges in orthopaedics and sports medicine. In recent years, a remarkable advancement in tendon research field has been the discovery of tendon stem/progenitor cells (TSCs). Unlike tenocytes, the predominant resident cell in tendons, TSCs have the ability to self-renew and multi-differentiate. Because of these distinct properties, TSCs may play a critical role in tendon physiology as well as pathology such as tendinopathy, which is a prevalent chronic tendon injury...
2016: Advances in Experimental Medicine and Biology
Issei Komatsu, James H-C Wang, Kiyotaka Iwasaki, Tatsuya Shimizu, Teruo Okano
UNLABELLED: Tissue-engineering approaches have a great potential to improve the treatment of tendon injuries that affect millions of people. The present study tested the hypothesis that introduction of a tendon derived stem/progenitor cell (TSC) sheet accelerates tendon healing and tendon regeneration in a rat model. TSC sheets were produced on temperature-responsive culture dishes. Then, they were grafted on unwounded Achilles tendons and at sites of a 3mm of Achilles tendon defect. At 2 and 4weeks after implantation tendons were examined by histology, immunohistochemistry, transmission electron microscopy (TEM) and mechanical testing...
September 15, 2016: Acta Biomaterialia
Robert F LaPrade, Andrew G Geeslin, Iain R Murray, Volker Musahl, Jason P Zlotnicki, Frank Petrigliano, Barton J Mann
Biologic therapies, including stem cells, platelet-rich plasma, growth factors, and other biologically active adjuncts, have recently received increased attention in the basic science and clinical literature. At the 2015 AOSSM Biologics II Think Tank held in Colorado Springs, Colorado, a group of orthopaedic surgeons, basic scientists, veterinarians, and other investigators gathered to review the state of the science for biologics and barriers to implementation of biologics for the treatment of sports medicine injuries...
March 29, 2016: American Journal of Sports Medicine
Alberto Gobbi, Matthew Fishman
Regenerative medicine is a fast-growing field in orthopedic sports medicine. Platelet-rich plasma contains multiple factors that have been shown to augment healing, thereby stimulating its use in multiple areas of acute and chronic injuries. Mesenchymal stem cells have pluripotent potential to form into tissues pertinent to orthopedics, such as cartilage and bone. As such, there is been a surge in the research directed toward steering those stem cells into a particular lineage as part of treatment for a variety of soft-tissue, cartilage, and bone pathologies...
June 2016: Sports Medicine and Arthroscopy Review
Hamish Osborne, Lynley Anderson, Peter Burt, Mark Young, David Gerrard
No abstract text is available yet for this article.
March 2016: Clinical Journal of Sport Medicine: Official Journal of the Canadian Academy of Sport Medicine
Hamish Osborne, Lynley Anderson, Peter Burt, Mark Young, David Gerrard
This Position Statement has been written expressly for members of the Australasian College of Sports Physicians (ACSP); however, it may also be of interest to the wider medical community, sporting organisations, athletes and the general community. It has been informed by a comprehensive review of the scientific literature and the opinions of kindred organisations. This statement outlines the use of mesenchymal stem cell (MSC) therapies in the broad context of Sport and Exercise Medicine, recognising that every medical practitioner should respect: (1) the evidence for the therapeutic use of MSCs and (2) the priority for patient health and welfare...
December 23, 2015: British Journal of Sports Medicine
Jonathan C Riboh, Bryan M Saltzman, Adam B Yanke, Brian J Cole
BACKGROUND: Amniotic membrane (AM)-derived products have been successfully used in ophthalmology, plastic surgery, and wound care, but little is known about their potential applications in orthopaedic sports medicine. PURPOSE: To provide an updated review of the basic science and preclinical and clinical data supporting the use of AM-derived products and to review their current applications in sports medicine. STUDY DESIGN: Systematic review...
September 2016: American Journal of Sports Medicine
Fernando Sepúlveda, Luis Baerga, William Micheo
Historically, the foundation of physical medicine and rehabilitation training has provided the capabilities to optimize nonoperative treatments of a variety of musculoskeletal conditions, including acute and chronic muscle, tendon, ligament, and cartilage disorders. Such treatments include the use of nonsteroidal anti-inflammatory drugs (NSAIDs), therapeutic modalities (eg, thermal and manual therapies), and corticosteroid injections in conjunction with specific rehabilitation exercises. Although NSAIDs, modalities, and corticosteroids may be helpful for short-term pain reduction and early recovery of function, they do not typically reverse the structural changes associated with degenerative conditions and may contribute to worse long-term outcomes by potentially interfering with tissue healing...
April 2015: PM & R: the Journal of Injury, Function, and Rehabilitation
MaCalus V Hogan, Garth N Walker, Liang Richard Cui, Freddie H Fu, Johnny Huard
The use of stem cell therapies for the treatment of orthopaedic injuries continues to advance. The purpose of this review was to provide an update of the current role and future directions of stem cell strategies in sports medicine. The application of cell-based treatments in the sports medicine arena has expanded in recent years. Promising preclinical results have led to translation of these novel therapies into the clinical setting. Early well-designed comparative clinical studies have also shown positive outcomes...
May 2015: Arthroscopy: the Journal of Arthroscopic & related Surgery
Mary Ann Chirba, Berkley Sweetapple, Charles P Hannon, John A Anderson
In sports medicine, adult stem cells are the subject of great interest. Several uses of stem cells are under investigation including cartilage repair, meniscal regeneration, anterior cruciate ligament reconstruction, and tendinopathy. Extensive clinical and basic science research is warranted as stem cell therapies become increasingly common in clinical practice. In the United States, the Food and Drug Administration (FDA) is responsible for regulating the use of stem cells through its "Human Cells, Tissues, and Cellular and Tissue-Based Products" regulations...
February 2015: Journal of Knee Surgery
S M Ostojic
In the past 2 decades, molecular hydrogen emerged as a novel therapeutic agent, with antioxidant, anti-inflammatory and anti-apoptotic effects demonstrated in plethora of animal disease models and human studies. Beneficial effects of molecular hydrogen in clinical environment are observed especially in oxidative stress-mediated diseases, such as diabetes mellitus, brain stem infarction, rheumatoid arthritis, or neurodegenerative diseases. A number of more recent studies have reported that molecular hydrogen affects cell signal transduction and acts as an alkalizing agent, with these newly identified mechanisms of action having the potential to widen its application in clinical medicine even further...
April 2015: International Journal of Sports Medicine
Gerard Malanga, Reina Nakamura, Reina Nakamurra
Traditional treatment of sports injuries includes use of the PRICE principle (Protection, Rest, Ice, Compression, Elevation), nonsteroidal anti-inflammatories, physical therapy modalities, and corticosteroid injections. Recent evidence has raised concerns over this traditional treatment approach regarding the use of anti-inflammatories and injectable corticosteroids. More recent treatments, known as regenerative medicine, include platelet-rich plasma and stem cell therapies. Evidence for their efficacy in a variety of sports injuries has emerged, ranging from tendinopathy and muscle tears to ligament and chondral injuries...
November 2014: Physical Medicine and Rehabilitation Clinics of North America
Brian Mailey, Ava Hosseini, Jennifer Baker, Adam Young, Zeni Alfonso, Kevin Hicok, Anne M Wallace, Steven R Cohen
Adipose tissue sciences have rapidly expanded since the identification of regenerative cells contained within the stromal vascular fraction (SVF) of fat. Isolation of the SVF, containing adipose-derived stem cells (ADSC), can be accomplished efficiently in the operating room or in the laboratory through enzymatic digestion of the adipose tissue and concentration of SVF. Cells can be directly re-injected as a mesotherapeutic agent, recombined with a tissue scaffold (e.g., cell-enriched fat grafts) or expanded in culture for tissue-engineered cell therapeutics...
2014: Methods in Molecular Biology
Jianying Zhang, James H-C Wang
Platelet-rich plasma (PRP) has become a popular option for the treatment of injured tendons. However, the efficacy of PRP treatment is a matter of heated debate in orthopaedics and sports medicine. In this study, we used a cell culture model to evaluate the potential effects of PRP treatment on degenerative tendinopathy. The in vitro model, which uses the current concept of "diseases-in-a-dish", consisted of tendon stem/progenitor cells (TSCs) that were derived from rabbit tendons and cultured in differentiating media with and without autologous platelet-rich clot releasate (PRCR)...
January 2014: Muscles, Ligaments and Tendons Journal
Thomas M Best, Burhan Gharaibeh, Johnny Huard
Skeletal muscle injuries are among the most common and frequently disabling injuries sustained by athletes. Repair of injured skeletal muscle is an area that continues to present a challenge for sports medicine clinicians and researchers due, in part, to complete muscle recovery being compromised by development of fibrosis leading to loss of function and susceptibility to re-injury. Injured skeletal muscle goes through a series of coordinated and interrelated phases of healing including degeneration, inflammation, regeneration and fibrosis...
November 2013: Postgraduate Medical Journal
S Ricco, S Renzi, M Del Bue, V Conti, E Merli, R Ramoni, E Lucarelli, G Gnudi, M Ferrari, S Grolli
Overstrain tendonitis are common pathologies in the sport horses. Therapeutic approaches to tendon healing do not always result in a satisfactory anatomical and functional repair, and healed tendon is often characterized by functional impairment and high risk of reinjury. Recently, mesenchymal stem cells (MSCs) and platelet rich plasma (PRP) have been proposed as novel therapeutic treatments to improve the tendon repair process. MSCs are multipotent, easy to culture and being originated from adult donors do not pose ethical issues...
January 2013: International Journal of Immunopathology and Pharmacology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"