Read by QxMD icon Read

Single channel

Edoardo Ferocino, Edoardo Martinenghi, Alberto Dalla Mora, Antonio Pifferi, Rinaldo Cubeddu, Paola Taroni
A novel detection chain, based on 8 Silicon Photomultipliers (forming a wide-area custom-made detection probe) and on a time-to-digital converter, was developed to improve the signal level in multi-wavelength (635-1060 nm) time domain optical mammography. The performances of individual components and of the overall chain were assessed using established protocols (BIP and MEDPHOT). The photon detection efficiency was improved by up to 3 orders of magnitude, and the maximum count rate level was increased by a factor of 10 when compared to the previous system, based on photomultiplier tubes and conventional time-correlated single-photon counting boards...
February 1, 2018: Biomedical Optics Express
Alexander Kyrychenko, Nathan M Lim, Victor Vasquez-Montes, Mykola V Rodnin, J Alfredo Freites, Linh P Nguyen, Douglas J Tobias, David L Mobley, Alexey S Ladokhin
Dynamic disorder of the lipid bilayer presents a challenge for establishing structure-function relationships in membranous systems. The resulting structural heterogeneity is especially evident for peripheral and spontaneously inserting membrane proteins, which are not constrained by the well-defined transmembrane topology and exert their action in the context of intimate interaction with lipids. Here, we propose a concerted approach combining depth-dependent fluorescence quenching with Molecular Dynamics simulation to decipher dynamic interactions of membrane proteins with the lipid bilayers...
March 17, 2018: Journal of Membrane Biology
Eugen Kaganovitch, Xenia Steurer, Deniz Dogan, Christopher Probst, Wolfgang Wiechert, Dietrich Kohlheyer
Microfluidics has enabled various research projects in the field of microbial single-cell analysis. In particular, single-use microfluidic cultivation devices combined with automated time-lapse imaging provide powerful approaches for analyzing microbial phenomena at the single-cell level. High spatiotemporal resolution facilitates individual cell identification and tracking, delivering detailed insights into areas like phenotypic population heterogeneity, which can be highly relevant to the fate of a microbial population and may negatively impact the efficiency of biotechnological fermentations...
March 14, 2018: New Biotechnology
Amir Koolivand, Stephan Clayton, Halie Rion, Armin Oloumi, Ariel O'Brien, Morteza G Khaledi
As previously reported, fluoroalcohols can induce coacervation in aqueous solutions of amphiphilic compounds with subsequent formation of two-phase systems, where one phase is enriched in amphiphile and fluoroalcohol and the other is primarily an aqueous - rich phase. This study focuses on the use of simple coacervates made of a single component amphiphile induced by a fluoroalcohol for extraction and enrichment of proteins. 1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) and 2,2,2-trifluoroethanol (TFE) were used to induce coacervation in the aqueous solutions of a cationic amphiphile, cetyltrimethylammonium bromide (CTAB) or tetra-n-butylammonium bromide (TBAB)...
March 3, 2018: Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences
Svetlana S Efimova, Anastasiia A Zakharova, Roman Ya Medvedev, Olga S Ostroumova
The potential therapeutic applications of plant polyphenols in various neurological, cardiovascular, metabolic and malignant disorders determine the relevance of studying the molecular mechanisms of their action on the cell membranes. Here, the quantitative changes in the physical parameters of model bilayer lipid membranes upon the adsorption of plant polyphenols were evaluated. It was shown that butein and naringenin significantly decreased the intrinsic dipole potential of cholesterol-free and cholesterol-enriched membranes...
March 16, 2018: Journal of Membrane Biology
Andrea Crisanti, Andrea De Martino, Jonathan Fiorentino
Genetic regulatory circuits universally cope with different sources of noise that limit their ability to coordinate input and output signals. In many cases, optimal regulatory performance can be thought to correspond to configurations of variables and parameters that maximize the mutual information between inputs and outputs. Since the mid-2000s, such optima have been well characterized in several biologically relevant cases. Here we use methods of statistical field theory to calculate the statistics of the maximal mutual information (the "capacity") achievable by tuning the input variable only in an ensemble of regulatory motifs, such that a single controller regulates N targets...
February 2018: Physical Review. E
Alvaro Marin, Henri Lhuissier, Massimiliano Rossi, Christian J Kähler
The flow of a charged-stabilized suspension through a single constricted channel is studied experimentally by tracking the particles individually. Surprisingly, the behavior is found to be qualitatively similar to that of inertial dry granular systems: For small values of the neck-to-particle size ratio (D/d<3), clogs form randomly as arches of the particle span the constriction. The statistics of the clogging events are Poissonian as reported for granular systems and agree for moderate particle volume fraction (ϕ≈20%) with a simple stochastic model for the number of particles at the neck...
February 2018: Physical Review. E
Tommy Dessup, Christophe Coste, Michel Saint Jean
The transport of particles in very confined channels in which single file diffusion occurs has been largely studied in systems where the transverse confining potential is smooth. However, in actual physical systems, this potential may exhibit both static corrugations and time fluctuations. Some recent results suggest the important role played by this nonsmoothness of the confining potential. In particular, quite surprisingly, an enhancement of the Brownian motion of the particles has been evidenced in these kinds of systems...
February 2018: Physical Review. E
Yanting Wang, Wenxian Lan, Zhenzhen Yan, Jing Gao, Xinlian Liu, Sheng Wang, Xiying Guo, Chunxi Wang, Hu Zhou, Jiuping Ding, Chunyang Cao
Large-conductance Ca2+ - and voltage-dependent K+ (BK) channels display diverse biological functions while their pore-forming α subunit is coded by a single Slo1 gene. The variety of BK channels is correlated with the effects of BKα coexpression with auxiliary β (β1-β4) subunits, as well as newly defined γ subunits. Charybdotoxin (ChTX) blocks BK channel through physically occluding the K+ -conduction pore. Human brain enriched β4 subunit (hβ4) alters the conductance-voltage curve, slows activation and deactivation time courses of BK channels...
March 15, 2018: Scientific Reports
Guang-Zhe Huang, Mutsuo Taniguchi, Ye-Bo Zhou, Jing-Ji Zhang, Fumino Okutani, Yoshihiro Murata, Masahiro Yamaguchi, Hideto Kaba
The formation of mate recognition memory in mice is associated with neural changes at the reciprocal dendrodendritic synapses between glutamatergic mitral cell (MC) projection neurons and GABAergic granule cell (GC) interneurons in the accessory olfactory bulb (AOB). Although noradrenaline (NA) plays a critical role in the formation of the memory, the mechanism by which it exerts this effect remains unclear. Here we used extracellular field potential and whole-cell patch-clamp recordings to assess the actions of bath-applied NA (10 µM) on the glutamatergic transmission and its plasticity at the MC-to-GC synapse in the AOB...
April 2018: Learning & Memory
Han Sun, Xiong Zhang, Yacong Zhao, Yu Zhang, Xuefei Zhong, Zhaowen Fan
The novel human-computer interface (HCI) using bioelectrical signals as input is a valuable tool to improve the lives of people with disabilities. In this paper, surface electromyography (sEMG) signals induced by four classes of wrist movements were acquired from four sites on the lower arm with our designed system. Forty-two features were extracted from the time, frequency and time-frequency domains. Optimal channels were determined from single-channel classification performance rank. The optimal-feature selection was according to a modified entropy criteria (EC) and Fisher discrimination (FD) criteria...
March 15, 2018: Sensors
Tao Jiang, Hao Hong, Can Liu, Wei-Tao Liu, Kaihui Liu, Shiwei Wu
Interactions between elementary excitations, such as carriers, phonons and plasmons, are critical for understanding the optical and electronic properties of materials. The significance of these interactions is more prominent in low-dimensional materials and can dominate their physical properties due to the enhanced interactions between these excitations. One-dimensional single-walled carbon nanotubes provide an ideal system for studying such interactions due to their perfect physical structures and rich electronic properties...
March 15, 2018: Nano Letters
Hiroki Yasuga, Koki Kamiya, Shoji Takeuchi, Norihisa Miki
Two-dimensional (2D) microdroplet arrays with indexed sample concentration gradients have been receiving considerable attention for high-throughput biological and medical analyses. However, the preparation of such an array by conventional methods mandates precise pipetting and/or pumping. In this paper, we introduce a method to spontaneously generate 2D-arrayed aqueous droplets using a well array, for which coarse pipetting is sufficient. The wells are connected in rows and columns via narrow channels. Aqueous solutions impregnated in the well array are split into droplets in every single well as a subsequently introduced immiscible solvent self-propagates and divides the solution at the channels...
March 15, 2018: Lab on a Chip
Gustavo Lemos Pelandré, Nathália Martins Pereira Sanches, Marcelo Souto Nacif, Edson Marchiori
Objective: To evaluate the accuracy of visual analysis and of the coronary artery calcium (CAC) score in nontriggered computed tomography (CT), in comparison with that of the CAC score in electrocardiogram-triggered CT, in identifying coronary calcification. Materials and Methods: A total of 174 patients for whom CT was indicated for CAC scoring underwent nontriggered and triggered CT in a 64-channel multislice scanner, in a single session without a change in position...
January 2018: Radiologia Brasileira
Victor Matveev
Fundamental cell processes such as synaptic neurotransmitter release, endocrine hormone secretion, and myocyte contraction are controlled by highly localized calcium (Ca2+ ) signals resulting from brief openings of trans-membrane Ca2+ channels. On short temporal and spatial scales, the corresponding local Ca2+ nanodomains formed in the vicinity of a single or several open Ca2+ channels can be effectively approximated by quasi-stationary solutions. The rapid buffering approximation (RBA) is one of the most powerful of such approximations, and is based on the assumption of instantaneous equilibration of the bimolecular Ca2+ buffering reaction, combined with the conservation condition for the total Ca2+ and buffer molecule numbers...
March 13, 2018: Biophysical Journal
Katsuhito Matsuki, Daiki Kato, Masashi Takemoto, Yoshiaki Suzuki, Hisao Yamamura, Susumu Ohya, Hiroshi Takeshima, Yuji Imaizumi
Physiological functions of type 3 ryanodine receptors (RyR3) in smooth muscle (SM) tissues are not well understood, in spite of their wide expression. However, the short isoform of RyR3 is known to be a dominant negative variant (DN-RyR3), which may negatively regulate functions of both RyR2 and full length (FL)-RyR3 by forming hetero-tetramers. Here, functional roles of RyR3 in the regulation of Ca2+ signaling in mesenteric artery SM cells (MASMCs) were examined using RyR3 homozygous knockout mice (RyR3-/- )...
March 14, 2018: American Journal of Physiology. Cell Physiology
Sujith S Pereira, Stephen T Kempley, David F Wertheim, Ajay K Sinha, Joan K Morris, Divyen K Shah
Background: Cerebral electrical activity in extremely preterm infants is affected by various factors including blood gas and circulatory parameters. Objective: To investigate whether continuously measured invasive mean arterial blood pressure (BP) is associated with electroencephalographic (EEG) discontinuity in extremely preterm infants. Study design: This prospective observational study examined 51 newborn infants born <29 weeks gestation in the first 3 days after birth...
2018: Frontiers in Neurology
Pengyu Guan, Francesco Da Ros, Mads Lillieholm, Niels-Kristian Kjøller, Hao Hu, Kasper Meldgaard Røge, Michael Galili, Toshio Morioka, Leif Katsuo Oxenløwe
Optical data regeneration is attractive, due to its potential to increase transmission reach and data throughput in communication systems, and several interesting proposals have been made. However, efficient and scalable solutions for regeneration of multiple parallel wavelength channels have been elusive, constituting a key challenge, which must be overcome for optical regeneration to have any prospect of being adapted in actual communication systems. Here we report a scalable wavelength-division multiplexing (WDM) regeneration scheme for phase only regeneration, which satisfies the multichannel requirement, using a set of optical time-lens-based Fourier processors combined with a single phase-sensitive amplifier (PSA)...
March 13, 2018: Nature Communications
Ao Shen, Madeline Nieves-Cintron, Yawen Deng, Qian Shi, Dhrubajyoti Chowdhury, Jinyi Qi, Johannes W Hell, Manuel F Navedo, Yang K Xiang
G protein-coupled receptors (GPCRs) transduce pleiotropic intracellular signals in a broad range of physiological responses and disease states. Activated GPCRs can undergo agonist-induced phosphorylation by G protein receptor kinases (GRKs) and second messenger-dependent protein kinases such as protein kinase A (PKA). Here, we characterize spatially segregated subpopulations of β2 -adrenergic receptor (β2 AR) undergoing selective phosphorylation by GRKs or PKA in a single cell. GRKs primarily label monomeric β2 ARs that undergo endocytosis, whereas PKA modifies dimeric β2 ARs that remain at the cell surface...
March 13, 2018: Nature Communications
Riku Takahashi, Tao Lin Sun, Yoshiyuki Saruwatari, Takayuki Kurokawa, Daniel R King, Jian Ping Gong
Reinforcing hydrogels with a rigid scaffold is a promising method to greatly expand the mechanical and physical properties of hydrogels. One of the challenges of creating hydrogel composites is the significant stress that occurs due to swelling mismatch between the water-swollen hydrogel matrix and the rigid skeleton in aqueous media. This stress can cause physical deformation (wrinkling, buckling, or fracture), preventing the fabrication of robust composites. Here, a simple yet versatile method is introduced to create "macroscale" hydrogel composites, by utilizing a rigid reinforcing phase that can relieve stress-induced deformation...
March 13, 2018: Advanced Materials
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"